声子晶体带隙特性可以抑制声波的传播,为减振降噪提供了一条新的途径。本文采用理论与数值方法研究了周期性附加单腔赫姆霍兹共鸣器一维管路的声传播特性,分析了局域共振带隙及布拉格带隙的带隙特性。通过调节参数,发现局域共振带隙与布拉格带隙可以产生耦合,可实现低频宽带隔声,进一步分析了不同晶格常数下的带隙宽度及传递损失。研究结果表明可以通过调节参数,使两种机理的带隙发生耦合,有望为拓宽低频声带隙提供一种新方法。
Abstract
The presence of band gaps in phononic crystals, which forbids acoustic wave propagation within the band-gap frequency range, supplies a new way to control noise and vibration. Acoustic characteristics , Bragg-type band-gap(BG) and locally resonant(LR) BG in the pipe ,periodically installing single Helmholtz resonators(HRs) ,are investigated theoretically and numerically in this paper. By adjusting the parameters , locally resonant BGs and Bragg-type BGs can generate coupling , consequently wide BGs in low frequency will be achieved. A further analysis of the band gap and the transmission loss is discussed under different lattice constant. The result shows that adjusting the parameters can generate coupling with two kinds of acoustic band-gap. This provides us a possible way to achieve a wider acoustic band gap via using the Helmhotlz resonator with appropriate parameters.
关键词
噪声控制 /
声子晶体 /
平面波假设 /
声带隙耦合
{{custom_keyword}} /
Key words
noise control /
phononic crystals /
plane wave assumption /
acoustic band-gap coupling;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家自然科学基金委员会,中国科学院.未来10年中国科学发展战略:工程科学[M].北京:科学出版社,2012.
[2] 马大猷.现代声学理论基础[M].北京:科学出版社,2004.、
[3] 肖勇.局域共振型结构的带隙调控与减振降噪特性研究[D].工学博士学位论文.长沙:国防科学技术大学,2012.9.
[4] 马兴瑞,郑钢铁,段广仁,催平远.动力学、振动与控制新进展[M].北京:中国宇航出版社, 2006.
[5] 何琳,朱海潮,邱小军,杜功焕.声学理论与工程应用[M].北京:科学出版社,2006.
[6] 陈克安.有源噪声控制[M].北京:国防工业出版社,2003.
[7] 方丹群, 张斌, 孙家麒, 卢伟健. 噪声控制(上册)[M]. 北京: 科学出版社, 2013.4, 848-863
[8] 赵力电. 压力管道振动分析[J]. 管道技术与设备, 2006, 6:31-32.
[9] 马大猷.亥姆霍兹共鸣器[J].声学技术,2002,21(1):2-3
[10] Ahmet Selamet,Lljae Lee.Helmholtz resonator with extended neck,[J]. Acoust. Soc. Am. 2003,113(4):Pt.1.
[11] S.K. Tang. On Helmholtz resonators with tapered necks,[J]. Sound Vib.,2005 ,297:1085-1096.
[12] X.H. Hu,K.M. Ho. Homogenization of acoustic metamaterials of Helmholtz resonators in fluid,[J].PHYSICAL REVIEW B, 2008,77:1723-1724.
[13] C. Hladky-Hennion, C. Granger and J. Vasseur.Propagation of elastic waves in one-dimensional periodic stubbed waveguides[J]. PHYSICAL REVIEW B, 2010,82:1043-1049.
[14] Z.G. Wang, S.H. Lee, C.K. Kim, M. Park, K. Nahm, S.A. Nikitov. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators. Journal of Applied Physics[J],103 (2008) 064907.
[15] 温熙森. 光子/声子晶体理论与技术[M] . 北京:科学出版社,2006.
[16] 吴福根,刘正猷,刘有严. 二维周期性复合介质中声波带隙结构及其缺陷态[J].物理学报,2002,5:1434-1438.
[17] 郁殿龙.基于声子晶体理论的梁板类周期结构振动特性研究[D].长沙:国防科技大学,2006
[18] 王刚.声子晶体局域共振带隙机理及减振特性研[D].长沙:国防科技大学,2006
[19] 温激鸿,王刚,刘耀宗,郁殿龙.基于集中质量法的一维声子晶体弹性波带隙计算[J].物理学报,2004,53(10):3384-3388.
[20] 温激鸿,声子晶体振动带隙及减振特性研究[D],长沙:国防科技大学,2005
[21] 张亚峰. 声子晶体管路减振降噪研究[D] .长沙:国防科学技术大学,2012
[22] Selamet A, Radavich PM, Dickey NS, Novak JM.Circular concentric Helmholtz resonators[J].AcoustSoc Am,1997,101: 41-51.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}