复合材料波纹板在剪切载荷下的屈曲特性分析与可靠性优化

郑宇宁 1,邱志平 1,苑凯华 2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 7-14.

PDF(1626 KB)
PDF(1626 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (19) : 7-14.
论文

复合材料波纹板在剪切载荷下的屈曲特性分析与可靠性优化

  • 郑宇宁 1 , 邱志平 1,苑凯华 2
作者信息 +

Buckling performance analysis and reliability optimization of composite corrugated plate under shear loading

  • ZHENG Yuning 1   QIU Zhiping 1  YUAN Kaihua 2
Author information +
文章历史 +

摘要

飞机机翼的墙腹板广泛采用复合材料波纹板结构,该结构在剪切载荷作用下的屈曲可靠性是其设计中必须考虑的因素。基于波纹板等效拉伸和弯曲刚度模型,采用Ritz法和最小势能原理,推导了复合材料波纹板临界剪切屈曲载荷的计算方法;充分考虑复合材料属性及外载荷中存在的不确定性,采用区间向量实现不确定参数的定量化;借助参数顶点法确定屈曲载荷因子的上下界,提出了剪切载荷作用下屈曲可靠性的区间分析方法;利用区间可能度指标刻画剪切屈曲可靠度,建立了含不确定参数的复合材料波纹板区间可靠性优化模型。数值算例表明,本文方法与有限元方法(FEM)相吻合,优化结果验证了所建立的区间可靠性优化模型及算法的有效性。

Abstract

Composite corrugated plates are widely used in the wall web of aircraft wing and the buckling reliability under shear loading is a factor that should be considered during the design of corrugated plates. Based on the equivalent models of flexural and extensional rigidities, an analytical method of critical shear buckling loads of composite corrugated plates is derived by utilizing Ritz method and the principle of minimum potential energy. The uncertainties in composite structural parameters and external load are fully considered and quantified by interval vectors. By virtue of the vertex solution theorem, the response range of buckling factor could be predicted and the interval analytical method of buckling reliability subjected to shear loading is established. The interval possible degree is adopted to describe the reliability of shear buckling. An interval reliability optimization model to address the effects of parametric uncertainties is proposed aiming at composite corrugated plates. Numerical examples indicate the results by both the presented method and FEM agree very well and the optimal results demonstrate the effectiveness of proposed interval reliability optimization model and algorithm.
 

关键词

复合材料 / 波纹板 / 屈曲 / 不确定性 / 区间分析 / 可靠性优化

Key words

composite materials / corrugated plate / buckling / uncertainty / interval analysis / reliability optimization

引用本文

导出引用
郑宇宁 1,邱志平 1,苑凯华 2. 复合材料波纹板在剪切载荷下的屈曲特性分析与可靠性优化[J]. 振动与冲击, 2016, 35(19): 7-14
ZHENG Yuning 1 QIU Zhiping 1 YUAN Kaihua 2. Buckling performance analysis and reliability optimization of composite corrugated plate under shear loading[J]. Journal of Vibration and Shock, 2016, 35(19): 7-14

参考文献

[1] Stroud W J. Elastic constants for bending and twisting of corrugation-stiffened panels [R]. NASA TR R-166, Hampton: NASA Langley Research Center, 1963.
[2] Briassoulis D. Equivalent orthotropic properties of corrugated sheets [J]. Computers and Structures, 1986, 23(2): 129-138.
[3] Samanta A, Mukhopadhyay M. Finite element static and dynamic analyses of folded plates [J]. Engineering Structures, 1999, 21: 277-287.
[4] Yokozeki T, Takeda S, Ogasawara T,et al. Mechanical properties of corrugated composites for candidate materials of flexible wing structures[J]. Composites, 2006, Part A 37, 1578-1586.
[5] Xia Y, Friswell M I, Saavedra Flores E I. Equivalent models of corrugated panels [J]. International Journal of Solids Structures, 2012, 49(13): 1453-1462.
[6] Liew K M, Peng L X, Kitipornchai S. Buckling analysis of corrugated plates using a mesh-free Galerkin method based on the first-order shear deformation theory [J]. Computational Mechanics, 2006, 38(1): 61-75.
[7] Wennberg D, Wennhage P, Stichel S. Orthotropic Models of Corrugated Sheets in Finite Element Analysis [J]. ISRN Mechanical Engineering, 2011, 2011.
[8] Shaw A D, Dayyani I, Friswell M I. Optimisation of composite corrugated skins for buckling in morphing aircraft [J]. Composite Structures, 2015, 119: 227-237.
[9] 吴存利, 段世慧, 李新祥. 复合材料波纹板剪切载荷作用下的屈曲试验与分析[J]. 航空学报, 2011, 32(8): 1453-1460.
Wu Cun-li, Duan Shi-hui, Li Xin-xiang. Buckling investigation of composite corrugated panel subject to shear loads [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1453-1460. [10] Tsao C C, Hocheng H. Effects of exit back-up on delamination in drilling composite materials using a saw and a core drill [J]. International Journal of Machine Tools and Manufacture, 2005, 45: 1261-1270.
[11] Tewary V K. Mechanics of Fiber Composites [M]. New York: Wiley, 1978.
[12] Jiang C, Han X, Liu G P. Uncertain optimization of composite laminated using a nonlinear interval number programming method  [J]. Computers and Structures, 2008, 86: 1696-1703.
[13] 许孟辉, 邱志平. 复合材料点阵夹芯结构平压性能不确定分析与优化 [J]. 复合材料学报, 2013, 30(4): 177-184.
Xu Meng-Hui, Qiu Zhi-Ping. Uncertain analysis and optimization of compressive property of all-composite lattice truss core sandwich structure [J]. Acta Materiae Compositae Sinica, 2013, 30(4): 177-184.
[14] Yi J, Gil H, Youm K, et al. Interactive shear buckling behavior of trapezoidally corrugated steel webs [J]. Engineering Structure, 2008, 30(6): 1659-1666.
[15] Kassapoglou C. Design and analysis of composite structures: With applications to aerospace structures [M]. Chicester: John Wiley & Sons, 2010.
[16] 袁坚锋,尼早,陈宝兴. 弯剪复合载荷作用下复合材料层合板的强度校核方法[J]. 复合材料学报,2014,1(31),234-240.
Yuan Jian-feng, Ni Zao, Chen Bao-xing. Stress analysis of the buckling of composite laminates under bending shear combination loads [J]. Acta Materiae Compositae Sinica, 2014,1(31),234-240.
[17] 佟强. 多项式实根求解[D]. 北京:清华大学, 2007.
Tong Qiang. Polynomial real roots computation[D]. Beijing: Tsinghua University, 2007.
[18] Qiu Zhi-Ping, Wang Xiao-jun. Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded parameters [J]. Journal of vibration and sound, 2005,282(1-2):381-399.
[19] 张全, 樊治平, 潘德惠. 不确定性多属性决策中区间数的一种排序方法[J]. 系统工程理论与实践, 1999, 5: 129-133.
Zhang Quan, Fan Zhi-ping, Pan De-hui. A banking approach for interval numbers in uncertain multiple attribute decision making problems[J]. Systems Engineering-Theory and Practice, 1999, 5: 129-133.
 

PDF(1626 KB)

563

Accesses

0

Citation

Detail

段落导航
相关文章

/