将主成分分析(Principal Component Analysis,PCA)用于信号处理,并与奇异值分解(Singular Value Decomposition,SVD)方法比较。分析总结PCA及SVD信号处理原理,提出基于PCA的特征值差分谱理论用于信号消噪。结果表明,PCA与SVD的处理效果较相似,相似性原因为原始矩阵右奇异向量即为协方差矩阵特征向量。SVD较PCA的重构误差小,因SVD无需计算协方差矩阵,可避免舍入误差产生。
Abstract
The principal component analysis (PCA) is applied to signal processing and is compared with singular value decomposition (SVD). Firstly, the signal processing principles of PCA and SVD are analyzed and summarized. In view of the application of PCA in signal processing, the theory of eigenvalues difference spectrum based on PCA is proposed. It is pointed out that PCA has the very similar signal processing effect to that of SVD when applied to signal de-noising. Secondly, the reason for this similarity is analyzed theoretically, and it is found that this is because the right singular vectors of the original matrix are just the eigenvectors of its covariance matrix, and it is this reason that leads to the similarity of PCA and SVD in signal processing. Lastly, it is pointed out that the reconstruction error of SVD is smaller than that of PCA, and the reason is that SVD does not need to compute the covariance matrix, so the rounding errors is avoided.
关键词
主成分分析 /
奇异值分解 /
消噪 /
相似性 /
误差
{{custom_keyword}} /
Key words
principal component analysis /
singular value decomposition /
de-noising /
similarity;error
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pearson K. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11): 559-572.
[2] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459.
[3] Stewart G W. On the early history of the singular value decomposition[J]. SIAM Review, 1993, 35(4): 551-566.
[4] 赵学智,叶邦彦,陈统坚. 大型矩阵奇异值分解的多次分割双向收缩 QR算法[J]. 华南理工大学学报:自然科学版, 2010, 38(1):1-8.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Multi- partition and double-direction shrink QR algorithm for singular value decomposition of large-scale matrix[J]. Journal of South China University of Technology: Natural Science Edition, 2010, 38(1): 1-8.
[5] 赵学智,叶邦彦,陈统坚. 基于 SVD 的奇异性信号检测原理及其应用[J]. 振动与冲击, 2008, 27(6): 11-14.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Principle of singularity detection based on SVD and its application[J]. Journal of Vibration and Shock, 2008, 27(6): 11-14.
[6] 段向阳,王永生,苏永生.基于奇异值分解的信号特征提取方法研究[J]. 振动与冲击, 2009,28(11): 30-33.
DUAN Xiang-yang, WANG Yong-sheng, SU Yong-sheng. Feature extraction methods based on singular value decomposition[J]. Journal of Vibration and Shock, 2009, 28(11): 30-33.
[7] 张波,李健君. 基于Hankel 矩阵与奇异值分解 (SVD) 的滤波方法以及在飞机颤振试验数据预处理中的应用[J]. 振动与冲击, 2009, 28(2): 162-166.
ZHANG Bo, LI Jian-jun. De-noising method based on hankel matrix and SVD and its application in flight flutter testing data preprocessing[J]. Journal of Vibration and Shock, 2009, 28(2): 162-166.
[8] 陈恩利,张玺,申永军,等. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185-190.
CHEN En-li, ZHANG Xi, SHEN Yong-jun, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012,31(23): 185-190.
[9] 王建国,李健,刘颖源. 一种确定奇异值分解降噪有效秩阶次的改进方法[J]. 振动与冲击, 2014(12): 176-180.
WANG Jian-guo, LI Jian, LIU Ying-yuan. An improved method for determining effective order rank of SVD denoising[J]. Journal of Vibration and Shock, 2014(12): 176-180.
[10] 王峻峰. 基于主分量独立分量分析的盲信号处理及应用研究[D]. 华中科技大学, 2005.
[11] Liang Y C, Lee H P, Lim S P, et al. Proper orthogonal decomposition and its applications-part I: theory[J]. Journal of Sound and Vibration, 2002, 252(3): 527-544.
[12] Golub G H, Van Loan C F, 袁亚湘. 矩阵计算[M]. 北京:人民邮电出版社, 2011.
[13] 赵学智,叶邦彦,陈统坚. 奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010(1):100-108.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Difference spectrum theory of singular value and its application to
the fault diagnosis of headstock of lathe[J]. Journal of Mechanical Engineering,2010 (1): 100-108.
[14] 赵学智,叶邦彦,陈统坚. 矩阵构造对奇异值分解信号处理效果的影响[J]. 华南理工大学学报:自然科学版, 2008, 36(9):86-93.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Influence of matrix creation way on signal processing effect of singular value decomposition [J]. Journal of South China University of Technology: Natural Science Edition, 2008, 36(9): 86-93.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}