轴向运动功能梯度悬臂梁动力学分析

赵 亮,胡振东

振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 124-128.

PDF(1713 KB)
PDF(1713 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 124-128.
论文

轴向运动功能梯度悬臂梁动力学分析

  • 赵  亮,胡振东
作者信息 +

Dynamic analysis of an axially translating functionally graded cantilevered beam

  • ZHAO Liang,HU Zhen-dong
Author information +
文章历史 +

摘要

针对轴向运动悬臂梁振动会影响系统的安全性、稳定性问题,对功能梯度悬臂梁振动特性进行分析,利用广义哈密尔顿原理及假设模态法导出系统动力学方程。结果表明,功能梯度悬臂梁的横向位移与轴向位移耦合,功能梯度材料在厚度方向按体积分数函数呈指数变化,且梁自由端有集中质量块。并讨论材料指数及末端集中质量大小对振动影响,分析梁在伸展、收缩时的运动特性。所得结论可为类似结构的动力学分析、设计提供依据。

Abstract

The axially translating cantilevered beams are widely used in engineering. The vibration of the beams will exert great effect on the safety and reliability of the system. Dynamic analysis of an axially translating functionally graded (FG) cantilevered beam is investigated. The equations of the system are derived by the Hamilton’s principle with the assumed mode method. And the coupled equations of motion are gotten. The properties of FG materials are functionally graded in the thickness direction according to the volume fraction power-law distribution. A tip mass is considered to be concentrated at the free end of the beam. The effects of the power-law exponent and tip mass on the vibration are discussed. Moreover, the movement characteristics of the FG beam during the extension mode and the retraction mode are analyzed. The conclusions of this paper give a basis for dynamic analysis and design of similar structures.

关键词

功能梯度悬臂梁 / 轴向运动 / 振动分析 / 耦合的方程

Key words

functionally graded cantilevered beam / axially translating / dynamic analysis / coupled equations

引用本文

导出引用
赵 亮,胡振东. 轴向运动功能梯度悬臂梁动力学分析[J]. 振动与冲击, 2016, 35(2): 124-128
ZHAO Liang,HU Zhen-dong. Dynamic analysis of an axially translating functionally graded cantilevered beam[J]. Journal of Vibration and Shock, 2016, 35(2): 124-128

参考文献

[1] Wang P K C, Wei J D. Vibrations in a moving flexible robot arm [J]. Journal of Sound and Vibration, 1987,116(1):149-160.
[2] Stylianou M, Tabarrok B. Finite element analysis of an axially moving beam, part I-time integration [J]. Journal of Sound and Vibration,1994,178(4):433-453.
[3] Al-Bedoor B O, Khulief Y A. Finite element dynamic modeling of a translating and rotating flexible link[J]. Computer Methods in Appalled Mechanics and Engineering, 1996, 131:173-189.
[4] Zhu W D, Ni J. Energetic and stability of translating media with an arbitrarily varying length [J]. ASME Journal of Vibration and Acoustics, 2000,122(3):295-304.
[5] Chang J R, Lin W J, Huang C J, et al. Vibration and stability of an axially moving Rayleigh beam [J]. Applied Mathematical
 Modelling, 2010, 34(6):1482-1497.
[6] Wang L H, Hu Z D, Zhong Z, et al. Hamiltonian dynamic analysis of an axially translating beam featuring time-variant   velocity [J]. Acta Mechanic, 2009, 206:149-161.
[7]  Wang L H, Hu Z D, Zhong Z, et al. Dynamic analysis of an axially translating viscoelastic beam with an arbitrarily   varying length [J]. Acta Mechanic, 2010, 214:225-244.
[8]  李山虎,杨靖波,黄清华,等. 轴向运动悬臂梁的独立模态振动控制(I)近似理论分析[J].应用力学学报,2002,19(1):35-38.
LI Shan-hu, YANG Jing-bo, HUANG Qing-hua, et al. Independent model space vibration control of an axially moving cantilever beam (part I) theoretical analysis of approximation [J]. Chinese Journal of Applied Mechanics, 2002, 19(1):35-38.
[9]  罗炳华,高跃飞,刘荣华,等.轴向运动梁受移动载荷作用的横向动力响应[J]. 振动与冲击,2011, 30(3):59-63.
    LUO Bing-hua, GAO Yue-fei, LIU Rong-hua, et al. Lateral dynamic response of an axially moving beam under a moving   load [J]. Journal of Vibration and Shock, 2011, 30(3):59-63.
[10] 刘宁,杨国来. 移动质量作用下轴向运动悬臂梁振动特性分析[J]. 振动与冲击,2012, 31(3):102-105.
LIU Ning, YANG Guo-lai. Vibration property analysis of axially moving cantilever beam considering the effect of moving mass[J]. Journal of Vibration and Shock, 2012, 31(3): 102-105.
[11] Piovan M T, Sampaio R. Vibrations of axially moving flexible beams made of functionally graded materials [J]. Thin-Walled Structures, 2008, 46(16): 112-121.
[12] Kang Y A, Li X F. Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force [J]. International Journal of Non-Linear Mechanics, 2009, 44(6): 696-703.
[13] Simsek M. Vibration analysis of a functionally graded beam under a moving mass by using different beam theories[J]. Composite Structures, 2010, 92: 904-917.
[14] Pradhan K K, Chakraverty S. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method [J]. Composites: Part B, 2013, 51:175-184.

PDF(1713 KB)

987

Accesses

0

Citation

Detail

段落导航
相关文章

/