消声器传递损失预测的边界元数值配点混合方法

杨 亮 1,季振林 1,T.W.Wu 2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 153-157.

PDF(1373 KB)
PDF(1373 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 153-157.
论文

消声器传递损失预测的边界元数值配点混合方法

  • 杨  亮 1,季振林 1,T.W.Wu 2
作者信息 +

Transmission loss prediction of silencers by using combined boundary element  method and numerical collocation approach

  • YANG Liang1,JI Zhen-lin1,WU T.W.2
Author information +
文章历史 +

摘要

将边界元法与数值配点法结合形成混合方法用于计算任意截面形状消声器的传递损失。消声器划分为若干子结构,用边界元法计算具有非规则形状的子结构阻抗矩阵,用二维有限元法提取等截面子结构特征值及特征向量,用配点法获得阻抗矩阵;将每个子结构阻抗矩阵连接用于传递损失计算。为减少计算时间提出简化方法计算消声器传递损失。结果表明,混合法在保证计算精度前提下可节省计算时间。

Abstract

A technique combining the boundary element method (BEM) and numerical collocation approach is proposed to calculate the transmission loss of silencers with arbitrary cross-section. The silencer is divided into several substructures. The BEM and the numerical collocation approach are employed to evaluate the impedance matrices of substructures with any-shaped cross-section and uniform cross-section along axial direction, respectively, and then the matrices for all substructures are related. The transmission loss predictions of several silencers agree well with BEM. The computational efficiency is analyzed and compared with traditional substructure method. The combined technique may save computational time efficiently.

关键词

消声器 / 传递损失 / 边界元方法 / 数值配点方法

Key words

silencer / transmission loss / boundary element method / numerical collocation approach

引用本文

导出引用
杨 亮 1,季振林 1,T.W.Wu 2. 消声器传递损失预测的边界元数值配点混合方法[J]. 振动与冲击, 2016, 35(2): 153-157
YANG Liang1,JI Zhen-lin1,WU T.W.2. Transmission loss prediction of silencers by using combined boundary element  method and numerical collocation approach[J]. Journal of Vibration and Shock, 2016, 35(2): 153-157

参考文献

[1] Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: I. analytical approach[J]. Journal of Sound and Vibration, 1998, 213(4): 601-617.
[2] Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet[J]. Journal of Sound and Vibration, 1999, 223(2): 197-212.
[3] Selamet A, Ji Z L. Acoustic attenuation performance of circular flow-reversing chambers[J]. Journal of the Acoustical Society of America, 1998, 104(5): 2867-2877.
[4] Selamet A, Xu M B, Lee I J, et al. Analytical approach for sound attenuation in perforated dissipative silencers with inlet/outlet extensions[J]. Journal of the Acoustical Society of America, 2005, 117(4): 2078-2089.
[5] Peat K S, Rathi K L. A finite element analysis of the convected acoustic wave motion in dissipative silencers[J]. Journal of Sound and Vibration, 1995, 184(3): 529-545.
[6] Ji Z L. Boundary element acoustic analysis of hybrid expansion chamber silencers with perforated facing[J]. Engineering Analysis with Boundary Elements, 2010, 34(7): 690-696.
[7] Wu T W, Cheng C Y R, Zhang P. A direct mixed-body boundary element method for packed silencers[J]. Journal of the Acoustical Society of America, 2002, 111(6): 2566-2572.
[8] Lou G, Wu T W, Cheng C Y R. Boundary element analysis of packed silencers with a substructuring technique[J]. Engineering Analysis with Boundary Elements, 2003, 27(7): 643-653.
[9] Kirby R, Lawrie J B. A point collocation approach to modelling large dissipative silencers[J]. Journal of Sound and Vibration, 2005, 286(1): 313-339.
[10] Kirby R, Williams P T, Hill J. A three dimensional investigation into the acoustic performance of dissipative splitter silencers[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2727-2737.
[11] Kirby R, Amott K, Williams P T, et al. On the acoustic performance of rectangular splitter silencers in the presence of mean flow[J]. Journal of Sound and Vibration, 2014, 333(24): 6295-6311.
[12] Kirby R. A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow[J]. Journal of Sound and Vibration, 2009, 325(3): 565-582.
[13] Fang Z, Ji Z L. Acoustic attenuation analysis of expansion chambers with extended inlet/outlet[J]. Noise Control Engineering Journal, 2013, 61(2):240-249.
[14] Fang Z, Ji Z L. Numerical mode matching approach for acoustic attenuation predictions of double-chamber perforated tube dissipative silencers with mean flow[J]. Journal of Computational Acoustics, 2014, 22(2):.
[15] Kirkup S M. Fortran codes for computing the discrete Helmholtz integral operators[J]. Advances in Computational Mathematics, 1998, 9(3/4): 391-409.
[16] Krishnasamy G, Schmerr L W, Rudolphi T J, et al. Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering[J]. Journal of Applied Mechanics, 1990, 57(2): 404-414.
[17] 方智,季振林. 穿孔管阻性消声器横向模态和声学特性计算与分析[J]. 振动与冲击, 2014, 33 (7):138-146.
FANG Zhi, JI Zhen-lin. Transversal modes and acoustic attenuation performance of a perforated tube dissipative silencer[J]. Journal of Vibration and Shock, 2014, 33(7): 138- 146.
[18] 方智,季振林. 穿孔管消声器横截面模态及消声特性的有限元分析[J]. 振动与冲击, 2012, 31(17): 190-194.
FANG Zhi, JI Zhen-lin. Finite element analysis of cross- section modes and acoustic attenuation characteristics of a perforated tube silencer[J]. Journal of Vibration and Shock, 2012, 31(17):190-194.

PDF(1373 KB)

684

Accesses

0

Citation

Detail

段落导航
相关文章

/