椭球面镜声波反射聚焦数值模拟研究

张 军1,陈 鹏1,陈正武1,赵 云2,曾新吾2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 201-206.

PDF(1572 KB)
PDF(1572 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 201-206.
论文

椭球面镜声波反射聚焦数值模拟研究

  • 张  军1,陈  鹏1,陈正武1,赵  云2,曾新吾2
作者信息 +

Numerical study of the focusing of sound wave using a concave ellipsoidal mirror

  •  ZHANG Jun1,CHEN Peng1,CHEN Zheng-wu1,ZHAO Yun2,ZENG Xin-wu2
Author information +
文章历史 +

摘要

据Hamilton线性理论解,给出沿椭球面镜轴线的电弧放电等离子声源(AD-PSS)反射波计算结果,分析由镜面引起的相位变化对中心波、边缘波及尾波传播影响。在聚焦前区中心波压力为正,边缘波、尾波压力为负;聚焦后区则相反。在线性条件下,反射波压力峰值出现于椭球面镜几何焦点,越过焦点后反射波压力幅值迅速衰减。利用有限元软件COMSOL对椭球面镜声反射过程进行数值模拟,揭示反射波传播演化过程及声场分布规律。据KZK方程及等效声源法,分析非线性效应对声传播过程影响。研究表明,非线性效应将使椭球面镜实际焦点位置偏离几何焦点,即正压实际焦点出现在几何焦点后,负压实际焦点出现在几何焦点前;随非线性系数增加正压实际焦点后移,负压实际焦点前移。

Abstract

Firstly, based on Hamilton’s theoretical linear solution, the numerical results of the reflection waves of arc-discharge plasma sound source (AD-PSS) along the symmetric axis of an ellipsoidal mirror are presented. The propagation characteristics of the center wave, the edge wave and the wake wave are analyzed. Before the far focus of the mirror, the pressure of center wave is positive and that of the edge wave and the wake wave is negative. Beyond the far focus, the situation is reversed. Under linear condition, the peak amplitude of the reflection wave collides with the far focus of the mirror. The pressure amplitude of the reflection wave decays very quickly beyond the far focus. Secondly, the reflection process of the sound wave is simulated using the FEM software COMSOL, and the evolution of the reflection wave and the distribution of the sound field are analyzed. Lastly, based on the KZK equation, the influence of nonlinear effects on the propagation of the reflection wave is discussed. 

关键词

等离子体声源 / 反射声波 / 椭球面镜

Key words

plasma sound source / reflection sound wave / ellipsoidal mirror

引用本文

导出引用
张 军1,陈 鹏1,陈正武1,赵 云2,曾新吾2. 椭球面镜声波反射聚焦数值模拟研究[J]. 振动与冲击, 2016, 35(2): 201-206
ZHANG Jun1,CHEN Peng1,CHEN Zheng-wu1,ZHAO Yun2,ZENG Xin-wu2. Numerical study of the focusing of sound wave using a concave ellipsoidal mirror[J]. Journal of Vibration and Shock, 2016, 35(2): 201-206

参考文献

[1] 尤特金. 液电效应[M]. 北京:科学出版社, 1962.
[2] Hamilton M F, Tjotta J N, Tjotta S. Nonlinear effects in the farfield of a directive sound source[J].J. Acoust Soc. Am., 1985, 78(1): 202-216.
[3] Schaefer R, Zagaeski M,Yoshikawa S. High source level sparker for navy app lications[R]. Phase I SBIR, Final Report for Naval Air Warfare Center, Contract No. N00421-03-P- 1081, 2003.
[4] 金明剑. 水下等离子体声源电特性的基础性研究[D].北京:中科院电工研究所, 2004.
[5] 黄逸帆. 等离子体声源技术[C]. 2011全国第一届水下安保会议技术学术论文集,2011:198.
[6] 王一博,曾新吾. 水中冲击波源压强的理论估算[C]. 2011全国第一届水下安保会议技术学术论文集, 2011:194.
[7] 张军,曾新吾. 强声波脉冲在水下的自反射聚焦[J]. 声学技术, 2010, 29(6):114-115.
ZHANG Jun, ZENG Xin-wu. The self-focusing of intense sound wave in water[J]. Acoustic Technology, 2010, 29(6): 114-115.
[8] Oneil H T. Theory of focusing radiators [J]. J.Acoust. Soc. Am., 1949, 21(5): 516-526.
[9] Lucas B G, Muir T G. The field of a focusing source[J]. J. Acoust. Soc. Am., 1982, 73(4): 1289-1296.
[10] Hamilton M F. Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror[J]. J. Acoust. Soc. Am., 1993, 93(3): 1256-1269.
[11] 张军,曾新吾,陈聃,等. 水下强声波脉冲负压的产生和空化气泡运动[J]. 物理学报, 2012, 61(18): 184302.
ZHANG Jun, ZENG Xin-wu, CHEN Dan,et al. The generation of negative pressure of intensive acoustic pulse in water and cavitation bubble dynamics[J]. Acta Physica Sinca, 2012, 61(18): 184302.
[12] 季家镕. 高等光学教程[M]. 北京:科学出版社, 2007.
[13] Lee Y S,Hamilton M F. Time-domain modeling of pulsed finite-amplitude sound beams[J].J. Acoust Soc. Am., 1994, 97(2): 907-917.
[14] 王鸿樟,钱盛友. 球面脉冲波在凹椭球面上反射的聚焦声场[J].上海交通大学学报, 1996, 30(5): 109-114.
WANG Hong-zhang, QIAN Sheng-you. The reflecto-focused sound field of spherical pulse wave from concave ellipsoidal surface[J]. Journal of Shanghai Jiaotong University, 1996, 30(5): 109-114.
[15] 张军.等离子体声源强声反射声场特性的理论和实验研究[D]. 长沙:国防科技大学, 2013.

PDF(1572 KB)

874

Accesses

0

Citation

Detail

段落导航
相关文章

/