基于信息熵与谱有限元法的传感器优化布置

张加培1,2,尹 涛1,朱宏平2,丁 兰2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 76-81.

PDF(1408 KB)
PDF(1408 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (2) : 76-81.
论文

基于信息熵与谱有限元法的传感器优化布置

  • 张加培1,2,尹  涛1,朱宏平2,丁  兰2
作者信息 +

Optimal sensor configuration by spectral finite element method and information entropy

  • ZHANG Jia-pei1,2,YIN Tao1,ZHU Hong-ping2,DING Lan2
Author information +
文章历史 +

摘要

为从测量数据中获得尽可能多信息,减少待识别模型参数的不确定性,提出面向结构模型参数识别的传感器优化布置方法。为避免用静态形函数传统有限元方法建模对结构动力特性及传感器优化布置影响,采用高精确动力学法即谱有限元法对结构进行动力学建模。以结构模型参数识别结果的不确定性最小作为传感器优化布置准则,该不确定性程度通过信息熵标量指标量化,用贝叶斯统计系统识别法进行识别。采用整数编码遗传算法在所有可能的传感器配置组合中极小化信息熵指标,获得给定数目的传感器最优布置位置。通过弹性地基带弹性接头的周期管梁模型数值仿真及模型试验验证所提方法。

Abstract

Over the last few decades, there has been great interest in the development of a structural health moni-toring (SHM) methodology based on vibration data. The quantity and quality of the measured data, i.e., the number of sensors and the corresponding locations are very important for the success of SHM utilizing measured dynamic re-sponses. In order to extract the most information from the measured data and reduce the uncertainties of the identified model parameters, a methodology of optimal sensor configuration for structural model parameters identification is pre-sented. In order to avoid the influence of modeling error induced by traditional finite element method based on static shape function on the results of structural dynamic characteristics and optimal sensor placement, spectral finite element method being a dynamic modeling method with high-accuracy is employed to model the target structure in the proposed methodology. In addition, minimum of the uncertainties in model parameter estimates is taken as the optimality criterion for placing sensors, and information entropy measure is used to quantify these uncertainties which are calculated by the Bayesian statistical identification methodology. The information entropy measure is minimized over the set of possible sensor configurations to optimally locate a given number of sensors by an integer-coded genetic algorithm. Both nu-merical simulation and laboratory experiment are carried out for a periodic pipe-beam model with flexible joints on elastic foundations to verify the proposed methodology.

关键词

结构健康监测 / 传感器优化布置 / 信息熵 / 谱有限元法 / 遗传算法 / 周期结构

Key words

structural health monitoring / optimal sensor placement / information entropy / spectral finite element method / genetic algorithm / periodic structure

 

引用本文

导出引用
张加培1,2,尹 涛1,朱宏平2,丁 兰2. 基于信息熵与谱有限元法的传感器优化布置[J]. 振动与冲击, 2016, 35(2): 76-81
ZHANG Jia-pei1,2,YIN Tao1,ZHU Hong-ping2,DING Lan2. Optimal sensor configuration by spectral finite element method and information entropy[J]. Journal of Vibration and Shock, 2016, 35(2): 76-81

参考文献

[1] 何浩祥,闫维明,张爱林. 面向结构健康监测的传感器数量及位置优化研究[J]. 振动与冲击,2008,27(9):131-134.
HE Hao-xiang,YAN Wei-ming, ZHANG Ai-lin. Optimization of number and placement of sensors for structural health monitoring[J]. Journal of Vibration and Shock,2008,27(9):131-134.
[2] 何旭辉,陈政清,黄方林,等. 南京长江大桥安全监测和状态评估的初步研究[J]. 振动与冲击,2003,22(1):77-80.
HE Xu-hui, CHEN Zheng-qing, HUANG Fang-lin, et al. Pre-liminary studies on safety monitoring and state assessment for Nanjing Yangtse River Bridge[J]. Journal of Vibration and Shock, 2003, 22(1):77-80.
[3] Meo M, Zumpano G. Optimal sensor placement on a large scale civil structure[C]. Proceedings of SPIE-The Interna-tional Society for Optical Engineering, v5394, Health Moni-toring and Smart Nondestructive Evaluation of Structural and Biological Systems III, 2004:108-117.
[4] 黄民水,朱宏平,李炜明. 基于改进遗传算法的桥梁结构传感器优化布置[J]. 振动与冲击,2008,27(3):82-86.
HUANG Min-shui, ZHU Hong-ping, LI Wei-ming. Optimal sensor placement on bridge structure based on genetic algo-rithm[J]. Journal of Vibration and Shock, 2008, 27(3):82-86.
[5] Lee U, Kim J, Andrew Y T L. The spectral element method in structural dynamics[J]. The Shock and Vibration, 2000, 32(6): 451-465.
[6] 黄民水,朱宏平,宋金强. 传感器优化布置在桥梁结构模态参数测试中的应用[J]. 公路交通科技,2008,25(2):85-88.
HUANG Min-shui, ZHU Hong-ping, SONG Jin-qiang. Ap-plication of optimal sensor placement in modal parameters test of bridge structure[J]. Journal of Highway and Transpor-tation Research and Development, 2008, 25(2):85-88.
[7] Papadimitriou C, Beck J L, Au S. Entropy-based optimal sensor location for structural model updating[J]. Journal of Vibration and Control, 2000, 6(5):781-800.
[8] Beck J L, Katafygiotis L S. Updating models and their uncer-tainties. I: bayesian statistical framework[J]. Journal of Engi-neering Mechanics, 1998, 124(4):455-461.
[9] 尹涛. 一种基于信息熵的分布参数结构传感器/激励器优化布置方法[J]. 振动与冲击,2014,33(22):51-57.
YIN Tao. A probabilistic approach for optimal sensor/actuator configuration of distributed-parameter systems based on in-formation entropy[J]. Journal of Vibration and Shock, 2014, 33(22):51-57.
[10] 伊廷华,李宏男,顾明. 基于MATLAB平台的传感器优化布置工具箱的开发及应用[J]. 土木工程学报,2010,43(12):87- 93.
YI Ting-hua, LI Hong-nan, GU Ming. Development of MATLAB based optimal sensor placement toolbox and its appliction[J]. Civil Engineering Journal, 2010, 43(12):87-93.
[11] Chow H M, Lam H F, Yin T, et al. Optimal sensor configura-tion of a typical transmission tower for the purpose of struc-tural model updating[J]. Structural Control and Health Moni-toring, 2011, 18(3): 305-320.
[12] 克拉夫R,彭津J,著.王光远,译.结构动力学[M].北京:高等教育出版社, 2006.
[13] Cho J, Go H, Lee U. Dynamic response of the spectral elment model by using the FFT[J]. Key Engineering Materials, 2007, 345-346:845-848.
[14] 尹涛,余岭,朱宏平. 一种基于模型修正的结构损伤识别方法[J]. 振动与冲击, 2007, 26(6):59-62.
YIN Tao, YU Ling, ZHU Hong-ping. Model updating based approach for structural damage idenfitication[J]. Journal of Vibration and Shock, 2007, 26(6):59-62.
[15] 雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
[16] 尹涛,朱宏平,余岭. 运用改进的遗传算法进行框架结构损伤检测[J]. 振动工程学报,2006,19(4):525-531.
YIN Tao, ZHU Hong-ping, YU Ling. Application study of an improved genetic algorithm for frame structure damage de-tection[J]. Journal of Vibration Engineering, 2006, 19(4):525-531.

PDF(1408 KB)

1058

Accesses

0

Citation

Detail

段落导航
相关文章

/