基于流固耦合方法的跨声速叶片气动和强度性能研究

汪松柏1,李绍斌1,2,宋西镇1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 104-110.

PDF(2626 KB)
PDF(2626 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 104-110.
论文

基于流固耦合方法的跨声速叶片气动和强度性能研究

  • 汪松柏1,李绍斌1,2,宋西镇1
作者信息 +

Investigations on Aerodynamic and Mechanical Performance of Transonic Blade Based on Fluid-Structure Interaction Method

  • WANG Song-bai1,LI Shao-bin1,2, SONG Xi-zhen1
Author information +
文章历史 +

摘要

为研究流固耦合对跨声速压气机叶片气动和强度性能的影响,采用商用软件ANSYS-CFX/Multiphysics研究了跨声速叶片在气动力和离心力共同作用下的气动性能变化规律,通过单向和双向两种耦合方法对比分析了叶片的强度性能。结果表明:叶片在气动力和离心力共同作用下,叶尖前缘变形量最大,气动性能与冷态叶片相比有明显变化,叶尖激波位置前移,堵塞流量增大。双向流固耦合与单向耦合相比,叶片的总体变形量增大约1.1%,最大等效应力增大0.8%左右。研究结果表明工程设计应采用双向流固耦合方法进行叶片气动性能设计和强度校核,以提高压气机的安全性和可靠性。

Abstract

In order to research the influence of the fluid-structure interaction for the aerodynamic and mechanical performance of the transonic compressor blade, A time domain two-way fluid-structure interaction numerical method with ANSYS-CFX/Multiphysics was applied to study the aerodynamic performance of transonic blade under aerodynamic and centrifugal forces. The mechanical performance was analyzed by comparing the results between one-way and two-way fluid-structure interaction methods. The results show that the maximum displacement of this blade appears at tip near leading edge, the blade deformation has significant effects on the aerodynamic performance in comparison with the cold blade, which makes passage shock wave position forward and choke mass flow rate increased. Comparing the results between one-way and two-way FSI numerical computation in mechanical performance, the amplitude of the overall blade deformation increases by 1.1%, and the maximum Von-Mises stress increases by 0.8%. The overall results indicate that the industrial practice should adopt a two-way fluid-structure interaction method to guide the aerodynamic design and check the strength, and to improve the safety and reliability of the compressor. 
 

 

关键词

跨声速压气机 / 流固耦合 / 气动性能 / 强度性能

Key words

transonic compressor / Fluid-Structure Interaction(FSI) / aerodynamic performance / mechanical performance

引用本文

导出引用
汪松柏1,李绍斌1,2,宋西镇1. 基于流固耦合方法的跨声速叶片气动和强度性能研究[J]. 振动与冲击, 2016, 35(20): 104-110
WANG Song-bai1,LI Shao-bin1,2, SONG Xi-zhen1. Investigations on Aerodynamic and Mechanical Performance of Transonic Blade Based on Fluid-Structure Interaction Method[J]. Journal of Vibration and Shock, 2016, 35(20): 104-110

参考文献

[1] 王占学,刘增文,蔡元虎,等. 推重比15一级发动机关键技术及分析[J]. 航空发动机,2010, 36(1): 58-62.
   WANG Zhan-xue, Liu Zeng-wen, CAI Yuan-hu, et al. Key technologies and analysis of aeroengine with Thrust to Weight Ratio up to Level of 15[J]. Aeroengine, 2010, 36(1): 58-62.
[2] 陈懋章,刘宝杰. 风扇/压气机气动设计技术发展趋势—用于大型客机的大涵道比涡扇发动机[J]. 航空动力学报,2008, 23(6): 961-975.
   CHEN Mao-zhang, Liu Bao-jie. Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan[J]. Journal of Aerospace Power, 2008, 23(6): 961-975.
[3] Mahajan A J, Stefko G L. An Iterative Multidisciplinary Analy- sis for Rotor Blade Shape Determination[R]. AIAA/SAE/AS- ME/ASEE 29th Joint Propulsion Conference and Exhibit 1993.
[4] Wilson M J, Imregun M, Sayma A I. The effect of stagger variability in gas turbine fan assemblies[J]. Journal of turbomachinery, 2007, 129(2): 404-411.
[5] Kallesøe B S, Hansen M H. Some effects of large blade deflections on aeroelastic stability[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. 2009: 5-8.
[6] Kallesøe B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations[J]. Wind Energy, 2007, 10(3): 209-230.
[7] Hou J, Wicks B J. Root flexibility and untwist effects on vibration characteristics of a gas turbine blade[R]. DEFENCE SCIENCE AND TECHNOLOGY ORGANIZATION VICT- ORIA (AUSTRALIA) PLATFORM SCIENCES LAB, 2002.
[8] 郑赟,田晓,杨慧. 跨声速风扇叶片变形对气动性能的影响[J]. 航空动力学报,2011, 26(07): 1621-1627.
    ZHENG Yun, TIAN Xiao, YANG Hui. Impact of blade deflection on aerodynamic performance of transonic fan[J]. Journal of Aerospace Power, 2010, 26(07): 1621-1627.
[9] 郑赟,王彪,杨慧. 跨声速风扇叶片的静态气动弹性问题[J].航空动力学报,2013, 28(11): 2475-2482.
    ZHENG Yun, WANG Biao, YANG Hui. Static aeroelastic problems of transonic fan blade[J]. Journal of Aerospace Power, 2013, 28(11): 2475-2482.
[10] 李彬,宋立明,李军. 基于双向流固耦合的长叶片气动和强度性能的数值研究[J]. 推进技术, 2014, 35(2): 202-207.
LI Bin, SONG Li-ming, LI Jun. Numerical Investigations on Aerodynamic and Mechanical Performance of Long Blade Based on Two-Way Fluid-Structure Coupling Approach[J]. Journal of propulsion Technology, 2014, 35(2): 202-207.
[11]  姜伟,谢诞梅,陈畅,等. 基于时域分析法的汽轮机末级叶片颤振预测及分析[J]. 振动与冲击,2015, 34(11): 194- 199.
JIANG Wei, XIE Dan-mei, CHEN Chang, et al. Flutter prediction and analysis for a steam turbine last-stage blade based on time domain analysis method[J]. JOURNAL OF VIBRATION AND SHOCK, 2015, 34(11): 194-199.
[12] 谭祯,李朝峰,太兴宇,等. 不同湍流模型旋转叶片气固耦合动力学特性研究[J]. 振动与冲击, 2013, 32(11): 46-50.
     TAN Zhen, LI Chao-feng, TAI Xing-yu, et al. Dynamic characteristics of rotating blades with gas-structure interaction of various turbulence models[J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(11): 46-50.
[13] Strazisar A J, Wood J R, Hathaway M D, et al. Laser anemometer measurements in a transonic axial-flow fan rotor[R]. NASA Technical Paper 2879, 1-220, 1989.
[14] Zheng R, Xiang J, Sun J. Blade geometry optimization for axial flow compressor[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2010: 633-644.
[15] 范顺昌,唐晓辉,张银东,等. 航空发动机高压压气机三级转子叶片掉角分析[J]. 失效分析与预防,2014, 9(2): 110-114.
FAN Shun-chang, TANG Xiao-hui, ZHANG Yin-dong, et al. Failure Analysis of Third-stage Rotor Blade of High-pressure Compressor in Aero-engine[J]. Failure Analysis and Preven- tion, 2014, 9(2): 110-114.

PDF(2626 KB)

660

Accesses

0

Citation

Detail

段落导航
相关文章

/