针对现有基于模态驱动的损伤识别方法在定位和定量方面的不足,提出了一种适用于剪切型框架结构的损伤识别算法。根据结构动力学特征方程,推导了剪切型结构的单元损伤系数方程,建立起单元损伤系数与损伤前后结构模态参数之间的关系;根据剪切型结构的单元损伤系数方程和约束线性最小二乘法,提出了一种适用于剪切型框架结构的损伤识别新指标,可以利用较少的模态阶次直接进行损伤的定位和定量识别。最后利用一个6自由度数值模型和试验室3层框架试验验证算法的有效性。
Abstract
In view of the existing damage detection method in identifying the damage location and degree of the insufficiency, which based on the modal driven, this article proposed a new damage detection approach that allows for the damage localization and quantitative identification in a shear frame structure. Based on the structural dynamic characteristic equation, the damage coefficient equation of shear structure was deduced, and then the relationship between the damage coefficient and the structural modal parameters before and after damage was established. Based on the damage coefficient equation and constraint linear least square method, this article proposed a new damage identification index for shear frame structure, which allows for the damage localization and quantitative identification in a shear frame structure using a small modal parameters. Finally a simulated model and a lab-scale frame structure were conducted to verify the validity of the algorithm.
关键词
损伤识别 /
模态参数 /
单元损伤系数 /
约束线性最小二乘法 /
剪切型框架
{{custom_keyword}} /
Key words
damage Identification /
modal parameter /
element damage coefficient /
constrained linear least square method /
shear frame structure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 任宜春.小波分析在土木工程结构损伤识别中的应用[M].湖南:湖南师范大学出版社,2010
Ren Yichun. Wavelet analysis and its application in civil engineering structures for damage identification[M]. Hunan: Hunan normal university press,2010. (in Chinese)
[2] K. Krishnan Nair, Anne S. Kiremidjian, Kincho H. Law. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure [J]. Journal of Sound and Vibration, 2006, 291:349-368
[3] A.A. Mosavi, D.Dickey, R.Seracino, S.Rizkalla. Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances[J]. Mechanical Systems and Signal Processing, 2012, 26: 254-267
[4] C.F. Farrar, K. Worden. An introduction to structural health monitoring [J]. Philos. Trans. R. Soc. A, 2007, 365: 303-315.
[5] 严平,李胡生,葛继平,叶黔元.基于模态应变能和小波变换的结构损伤识别研究[J] . 振动与冲击,2012,31(1):121-126
Yan Ping, Li Hu-sheng, Ge Ji-ping, Ye Qian-yuan. Structural damage identification based on modal strain energy and wavelet transformation[J]. Journal of vibration and shock ,2012,31(1):121-126
[6] 曹永红,张新亮,曹晖等.基于实用完备模态空间的两阶段损伤识别方案[J].工程力学,2009,26(3):168-175
Cao Yong-hong, Zhang Xin-liang, Cao Hui,etal. Two-stage damage identification scheme based on practical complete modal space[J]. Engineering Mechanics,2009,26(3):168-175.
[7] 郝坤超.高层建筑结构损伤检测理论方法研究[D].上海:同济大学,1997
Hao Kun-chao. Structural damage detection theory research for high-rise building[D]. Shanghai: Tongji University, 1997
[8] 曹晖,张新亮,李英民.利用模态柔度曲率差识别框架的损伤[J],振动与冲击, 2007, 26(6): 116―120
Cao Hui, Zhang Xin-liang, Li Ying-min. Damage evaluation of frames by modal flexibility curvature[J]. Journal of vibration and shock, 2007, 26(6): 116―120.
[9] 章国稳. 环境激励下结构模态参数自动识别与算法优化[D]. 重庆:重庆大学,2012
Zhang Guowen. Modal Parameter Automatic identification for Structures Under Ambient Excitation and Algorithm Optimization[D]. Chongqing: Chongqing University,2012
[10] Van Overschee P, De Moor B. Subspace identification for linear systems: Theory, implementation, applications[M]. Kluwer Academic Publishers, 1996.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}