综合考虑减振与抗冲击性能的复合基座设计方法

张相闻1, 杨德庆1, 吴广明2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 130-136.

PDF(1717 KB)
PDF(1717 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 130-136.
论文

综合考虑减振与抗冲击性能的复合基座设计方法

  • 张相闻1, 杨德庆1, 吴广明2
作者信息 +

Vibration and Shock Isolation Synthesis Design Method for Hybrid Base

  • ZHANG Xiang-wen1,YANG De-qing1,WU Guang-ming2
Author information +
文章历史 +

摘要

常规基座减振与抗冲击性能在设计中难以兼顾,为此提出了一种利用蜂窝构建负泊松比效应,采用组合结构型式,结合结构动力学优化设计技术的新型减振与抗冲击复合基座设计方法。以某舰用设备基座为例,采用数值方法,对新型复合基座减振与抗冲击机理进行研究。研究表明,常规面板、常规肘板和蜂窝腹板组合式复合基座减振抗冲击是利用了阻抗失配和蜂窝结构吸能两种效应。建立了以基座面板厚度、肘板厚度和腹板蜂窝胞元壁厚为设计变量,在单一减振指标约束和减振抗冲击双指标约束下的复合基座动力学优化设计模型。数值优化结果证明,采用新型负泊松比效应蜂窝腹板组合结构,利用减振及抗冲击双指标约束下的动力学优化设计模型,可设计出减振与抗冲击能力俱佳的复合基座。

Abstract

To meet the new requirements of the vibration reduction and shock resistance, a novel hybrid base consisting of face plates, brackets and auxetic honeycomb sandwich web plates is proposed by structural dynamics optimization method. Taking a naval ship transformer base as an example, vibration reduction and shock resistance mechanisms of the hybrid base are conducted by numerical simulation methods. The results reveal that the impedance mismatch effect and energy-absorbing characteristics of cellular materials play an important role in the new hybrid base. Dynamics optimization models of the hybrid base designed with thickness of face plates, brackets and honeycomb cells as variables are investigated in two cases, one with vibration reduction performance constraints and the other with both vibration reduction and shock resistance performance constraints. Optimization results indicate that by applying auxetic honeycomb hybrid structure and synthetic dynamics optimization design, excellent performance in vibration reduction and shock isolation can be obtained in the base design.

关键词

复合基座 / 减振 / 抗冲击性能 / 负泊松比效应 / 蜂窝

Key words

hybrid base / vibration reduction / impact resistance / auxetic properties / honeycomb

引用本文

导出引用
张相闻1, 杨德庆1, 吴广明2. 综合考虑减振与抗冲击性能的复合基座设计方法[J]. 振动与冲击, 2016, 35(20): 130-136
ZHANG Xiang-wen1,YANG De-qing1,WU Guang-ming2. Vibration and Shock Isolation Synthesis Design Method for Hybrid Base[J]. Journal of Vibration and Shock, 2016, 35(20): 130-136

参考文献

[1] 江国和,薛彬,冯伟等. 舰用变压器冲击响应计算[J]. 噪声与振动控制,2010,29(3):108-112.
JIANG guo-he,XUE bin,FENG wei,et al. Ship transformer shock response calculation[J]. Noise and Vibration Control,2010,29(3):108-112.
[2] Victor S,Tanchum W. On the feasibility of introducing auxetic behavior into thin-walled structures[J]. Acta Materialia. 2008,57 (1):125-135.
[3]  张梗林,杨德庆. 船舶宏观负泊松比蜂窝夹芯隔振器优化设计[J].振动与冲击,2013,32(22):68-72.
ZHANG geng-lin,YANG de-qing. Optimization design of an auxetic honeycomb isolator in a ship[J]. Journal of Vibration and Shock,2013,32(22):68-72.
[4]  Gibson L J,Ashby M F. Cellular solids: structure and properties, Second edition[M]. Cambridge:Cambridge University Press,1997.
[5]  Banerjee S, Bhaskar A. Free vibration of cellular structures using continuum modes[J]. Journal of Sound and Vibration,2005,287 (l-2):77-100.
[6]  Hayes A M,Wang A J,Dempsey B M,et al. Mechanics of linear cellular alloys [J]. Mechanics of Materials,2004,36(8),691-713.
[7]  赵显伟. 可变形蜂窝结构的力学性能分析[D]. 哈尔滨:哈尔滨工业大学,2013.
Zhao Xianwei. The Analysis of Mechanical Properties of Morphing Honeycomb Structures [D]. Harbin, Harbin Institute of Technology, 2013.  
[8]  吕林华,杨德庆. 船舶钢-复合材料组合基座减振设计方法分析[J]. 上海交通大学学报,2012,46(8):1196-1202.
Lv Lin-hua,YANG de-qing. Study on Vibration Reduction Design of Steel-Composite Materials Hybrid Mounting for Ships [J] . Journal of Shanghai Jiaotong University. 2012,46(8):1196-1202.
[9]  GJB1060.1-91,舰船环境条件要求-机械环境[S].
[10]  BV/0430,冲击安全性(前联邦德国国防军舰艇建造规范)[S]. 北京:中国舰船研究院科技发展部,1998.
[11]  Grice R M,Pinnington R J. A Method for the Vibration Analysis of Built-Up Structures,Part I:Introduction and Analytical Analysis of the Plate-Stiffened Beam[J]. Journal of Sound and Vibration. 2000,56(2):123-128.

PDF(1717 KB)

642

Accesses

0

Citation

Detail

段落导航
相关文章

/