粘弹性泡沫多孔材料骨架特征参数对材料吸声性能的影响

刘耀光,王晓林

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 137-141.

PDF(1436 KB)
PDF(1436 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 137-141.
论文

粘弹性泡沫多孔材料骨架特征参数对材料吸声性能的影响

  • 刘耀光,王晓林
作者信息 +

The influence of frame parameters of viscoelastic foams on sound-absorbing performance

  • LIU Yao-guang    WANG Xiao-lin  
Author information +
文章历史 +

摘要

基于Biot理论,研究了粘弹性多孔材料体积模量、损耗因子和骨架密度三个特征参数对吸声性能的影响规律。针对实际三聚氰胺泡沫材料,应用准静态法测量出其杨氏模量和泊松比,并根据上述规律推断出测到的骨架参数对阻尼和粘性耗散影响。为了进行验证,进一步测量出材料的静流阻率,并根据Dunn-Davern模型计算出有效密度和压缩模量。根据以上参数计算出刚性背衬下的材料吸声系数,在与实验值一致的情况下,进一步分解为阻尼、粘性和热传导耗散,其变化特征表明该材料阻尼耗散较小,共振现象明显,在1/4波长共振频率附近会引起粘性耗散和总吸声明显减少。

Abstract

The influence of frame parameters of poro-viscoelastic materials, including bulk modulus, loss factor and frame density, on sound-absorbing performance was investigated based on the Biot theory. A quasi-static method was used to measure Young’s modulus and Poisson’s ratio of a melamine foam. Their influence on sound-absorbing performance was also investigated in terms of these parameters. In addition, the effective density and bulk modulus of the foam were calculated by a model based on static resistivity developed by Dunn and Davern. When sound absorption of the foam with rigid backing was measured, our experiments were consistent with calculated absorption coefficients, which were further decomposed into parts due to damping, viscous and heat transfer losses. The results show that the damping loss of the foam is small, while the viscous and total losses are significantly reduced around the quarter wavelength resonance frequency.

关键词

Biot理论 / 粘弹性多孔材料 / 吸声性能 / 骨架参数

Key words

Biot theory / poro-viscoelastic materials / sound-absorbing performance / frame parameters

引用本文

导出引用
刘耀光,王晓林. 粘弹性泡沫多孔材料骨架特征参数对材料吸声性能的影响[J]. 振动与冲击, 2016, 35(20): 137-141
LIU Yao-guang WANG Xiao-lin . The influence of frame parameters of viscoelastic foams on sound-absorbing performance[J]. Journal of Vibration and Shock, 2016, 35(20): 137-141

参考文献

[1]  Zwikker C, Kosten W. Sound Absorbing Materials [M]. Elsevier, New York,1949.
[2]  Biot, M A. The Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. I.Low-frequency Range[J]. Journal of Acoustical Society of America,1956,28:168–178.
[3]  Biot, M A. The Theory of Propagation of Elastic Waves in a Fluid-saturated Porous Solid. I. High-frequency Range [J]. Journal of Acoustical Society of America,1956,28:179–191.
[4]  Bruneau M, Potel C. Materials and acoustics handbook[M]. Hoboken,USA: John Wiley&Sons,Inc., 2009.
[5]  Dazel O, Sgard F, Becot F X, et al. Expressions of Dissipated Powers and Stored Energies in Poroelastic Media Modeled by{u,U}and{u,P}Formulations[J]. Journal of Acoustical Society of America,2008, 123(4):2054–2063.
[6] LIU Yao-guang, WANG Xiao-lin. The influence of viscoelasticity on sound-absorbing performance of porous media[C]//The 21stInternational Congress on Sound and Vibration. Beijing, China, 2014.
[7]  Allard J –F. Propagation of Sound in Porous Media:Modeling Sound Absorbing Materials[M]. Chichester, UK: John Wiley & Sons, 2009.
[8]  Jaouen L, Renault A, Deverge M. Elastic and damping charac-
    terizations of acoustical porous materials: Available experime-
    ntal methods and applications to a melamine foam[J]. Applied acoustics, 2008, 69:1129-1140.
[9]  Langlois C, Panneton R, Atalla N. Polynomial relations for quasi-static mechanical characterization of isotropic poroelastic materials[J]. Journal of Acoustical Society of America,2001, 110(6):3032-3040.
[10]  Dauchez N, Etchessahar M, Sahraoui S. On measurement of mechanical properties of sound absorbing materials[C]//2nd Biot Conference on Poromechanics, Grenoble, France, 2002. 1-4.
[11]  Dunn I P, Davern W A. Calculation of acoustic impedance of multi-layer absorbers[J]. Applied acoustics,1986,19:321-334.

PDF(1436 KB)

Accesses

Citation

Detail

段落导航
相关文章

/