基于URANS与DDES方法的空腔近场噪声数值研究

刘俊1,杨党国2,王显圣2,罗新福2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 154-159.

PDF(2155 KB)
PDF(2155 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 154-159.
论文

基于URANS与DDES方法的空腔近场噪声数值研究

  • 刘俊1,杨党国2,王显圣2,罗新福2
作者信息 +

NUMERICAL SIMULATION OF NEAR-FIELD CAVITY NOISE BY URANS AND DDES

  • LIU Jun1, YANG Dang-guo2, WANG Xian-sheng2, LUO Xin-fu2
Author information +
文章历史 +

摘要

采用基于SST(Shear-Stress Transport)湍流模式的URANS(Unsteady Reynolds-averaged Navier-Stokes)和DDES (Delayed Detached Eddy Simulation)方法开展了马赫数0.85的三维空腔非定常流动数值计算。计算结果表明:两种方法得到的空腔底部静压、脉动压力声压级和功率谱均与实验及参考文献结果具有良好的一致性;DDES在模拟流动失稳、小尺度结构等流动细节方面更具优势,对高频压力脉动的捕捉也要优于URANS。通过对时均流场的分析,确定了模拟的空腔流动类型为过渡式流动,同时发现空腔内存在的复杂三维涡结构,并分析了这些涡结构对空腔流场特性的影响。

Abstract

Numerical simulations of three-dimensional unsteady cavity flow at Mach number 0.85 were conducted by using delayed detached eddy simulation (DDES) and unsteady RANS (URANS) methods based on the SST turbulence model. The gained static pressure, sound pressure level (SPL) and power spectral of pressure fluctuations at the cavity bottom by both methods compared well with experimental and other CFD results. Compared with URANS, DDES is more suitable for modeling flow details such as shear layer instability and fine scale turbulence structures, and also for high frequency pressure fluctuation capture. The simulated cavity flow can be identified as transitional flow by checking the time averaged flow characteristics. Meanwhile, complicated three-dimensional flow structures are also captured by both DDES and URANS, the effects of which are discussed.

 

关键词

URANS / DDES / 空腔噪声 / 脉动压力 / 涡结构

Key words

URANS / DDES / Cavity Noise / Pressure Fluctuation / Vortex Structure

引用本文

导出引用
刘俊1,杨党国2,王显圣2,罗新福2. 基于URANS与DDES方法的空腔近场噪声数值研究[J]. 振动与冲击, 2016, 35(20): 154-159
LIU Jun1, YANG Dang-guo2, WANG Xian-sheng2, LUO Xin-fu2. NUMERICAL SIMULATION OF NEAR-FIELD CAVITY NOISE BY URANS AND DDES[J]. Journal of Vibration and Shock, 2016, 35(20): 154-159

参考文献

[1] Plentovich E. B, Stallings R. L, Tracy M. B. Experimental cavity pressure measurements at subsonic and transonic speeds: static-pressure results[R]. NASA TP-3358, 1993.
[2] Stallings R. L, Plentovich E. B, Tracy M. B, etc. Measurements of store forces and moments and cavity pressures for a generic store in and near a box cavity at subsonic and transonic speeds[R]. NASA TM-4611, 1995.
[3] Stallings R. L, Floyd J. Wilcox. B. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987
[4] Tracy M. B, Plentovich E. B. Characterization of cavity flow fields using pressure data obtained in the Langley 0.3-meter transonic cryogenic tunnel[R]. NASA TM-4436, 1993.
[5] Maureen B, Tracy M. B. Plentovich E. B. Cavity unsteady-pressure measurements at subsonic and transonic speeds[R]. NASA TP-3669, 1997.
[6] Nathan E. Murray, Lawrence S. Ukeiley. Flow field dynamics in open cavity flows[C]. AIAA-2006-2428.
[7] Atvars K, Knowles K, Ritchie S A, et al. Experimental and computational investigation of an ‘open’ transonic cavity flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2009, 223(4): 357-368.
[8] Chingwei M. Shieh, Philip J. Morris. Comparison of two- and three-dimensional turbulent cavity flows[C]. AIAA-2001-0511.
[9] Hyung Jo Kim, Selin Aradag, Doyle D. Knight. Two and three dimensional simulations of supersonic cavity flow[C]. AIAA-2006-2431.
[10] Nayyar P, Barakos G N, Badcock K J, etc. Analysis and control of transonic cavity flow using DES and LES[C]. AIAA-2005-5267.
[11] Rowley C W, Colonius T, Basu A J. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[J]. Journal of Fluid Mechanics, 2002, 455: 315-346.
[12] Shia-Hui Peng.Simulation of turbulent flow past a rectangular open cavity using DES and unsteady RANS[C]. AIAA-2006-2827.
[13] Zhisong Li, Awatef Hamed, Debashis Basu. Numerical simulation of sidewall effects on the acoustic field in transonic cavity[C]. AIAA-2007-1456.
[14] 刘健. 采用 DES 类方法研究基本起落架非定常大范围分离流动[D]. 清华大学, 2011.
Liu Jian. Study of unsteady and massively separated flows past rudimentary landing gear using DES-type methods[D]. Tsinghua university, 2011.
[15] 陈龙,伍贻兆,夏健. 基于DES的高雷诺数空腔噪声数值模拟[J]. 计算力学学报,2011,(5).
Chen Long, Wu Yizhao, Xia Jian. High Reynolds number cavity acoustic numerical simulation using DES[J]. Chinese Journal of Computational Mechanics, 2011,(5).
[16] 陈都. 基于脱体涡模拟方法的空腔流场计算研究[D]. 南京航空航天大学, 2012.
Chen Du. Numerical study of cavity flow field based on detached eddy simulation method[D]. Nanjing University of Aeronautics and Astronautics, 2012.
[17] 谭玉婷. 空腔非定常流动特性的数值模拟研究[D]. 南京航空航天大学,2012.
Tan Yuting. Numerical simulation of the unsteady cavity flow features[D]. Nanjing University of Aeronautics and Astronautics, 2012.
[18] 张宝兵. 空腔流动的机理模拟和控制[D]. 南京航空航天大学,2012.
Zhang Baobing. Numerical simulation and control of cavity flow[D]. Nanjing University of Aeronautics and Astronautics, 2012.
[19] 司海青,王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京航空航天大学学报,2006,(5).
Si Haiqing, Wang Tongguang. Influence of boundary condition on 3-D cavity flow-induced oscillations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006,(5).
[20] Peng S.-H.: M219 Cavity. In: Haase, W., Braza, M., Revell, A. (eds.) DESider – A European Effort on Hybrid RANS-LES Modelling. NNFM, vol. 103, pp. 270–285
[21] Crook S D, Lau T C W, Kelso R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735: 587-612.
[22] Khanal B, Knowles K, Saddington A J. Computational study of flowfield characteristics in cavities with stores[J]. Aeronautical Journal, 2011, 115(1173): 669-681.
[23] 余培汛,白俊强,郭博智. 剪切层形态对开式空腔气动噪声的抑制[J]. 振动与冲击,2015,(1).
YU Pei-xun, BAI Jun-qiang, GUO Bo-zhi, etc. Suppression of aerodynamic noise by altering the form of shear layer in open cavity[J]. Journal of Vibration and Shock, 2015,(1).
[24] Lawson S J, Barakos G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216

PDF(2155 KB)

Accesses

Citation

Detail

段落导航
相关文章

/