钢管RPC抗冲击压缩特性及极限强度确定方法

陈万祥,2,郭志昆1,姜 猛1,闫凤国1,顾娟1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 160-171.

PDF(1714 KB)
PDF(1714 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 160-171.
论文

钢管RPC抗冲击压缩特性及极限强度确定方法

  • 陈万祥 ,2,郭志昆1,姜 猛1,闫凤国1,顾娟1
作者信息 +

Dynamic behaviors and ultimate strengths of RPC-Filled Steel Tubes under impact loading

  • Chen Wan-xiang1,2, Guo Zhi-kun1, Jiang Meng1, Yan Feng-guo1,Gu Juan1
Author information +
文章历史 +

摘要

采用ø74mm分离式霍普金森压杆(Split Hopkinson Pressure Bar,简称SHPB)试验装置,分别对20块钢管活性粉末混凝土(Reactive Powder Concrete-Filled Steel Tube,简称钢管RPC)和20块RPC试件进行了不同加载速率的冲击压缩试验,得到了不同应变率下的动态应力-应变曲线、峰值应力和峰值应变,分析了试件的破坏特征。在钢管混凝土静态轴向极限承载力计算公式基础上引入应变率效应,得到钢管RPC极限强度确定方法。结果表明:钢管RPC和RPC的峰值应力和峰值应变均随平均应变率增大而增大。冲击荷载作用下,钢管RPC比RPC具有更高的强度,更好的延性和完整性,是一种良好的抗冲击防护工程材料。钢管壁厚对钢管RPC动态应力-应变关系有明显影响,一定冲击速度下壁厚较薄的钢管RPC出现了明显的屈服平台和应力强化现象,峰值应变也显著增大。钢管RPC极限强度理论计算结果与试验结果存在一定的相对误差,但随着响应应变率增大相对误差逐渐减小。

Abstract

Dynamic behaviors of 20 Reactive Powder Concrete-Filled Steel Tube (RPC-Filled Steel Tube) specimens and 20 Reactive Powder Concrete (RPC) specimens under different impact loading are performed by using ø74 mm-Split Hopkinson Pressure Bar (SHPB), respectively. The stress-strain relationships, peak stress and peak strain of specimens in condition of different average strain rates are derived, the failure modes of specimens are also discussed. The prediction method of ultimate strength for RPC-Filled Steel Tube under impact loading is presented by means of introducing Dynamic Increase Factor (DIF) into the ultimate strength formula of RPC-Filled Steel Tube under static axial loading. It is indicated that the peak stress and peak strain of both RPC-Filled Steel Tube and RPC are increased as average strain rates increased. RPC-Filled Steel Tubes have higher strength, better ductility and integrity than RPC under impact loading, and the results show that RPC-Filled Steel Tube is a good material to resist to impact loads in protective engineering. The thickness of steel tube has obviously influence on the dynamic behaviors of RPC-Filled Steel Tube. Yielding state and stress hardening process can be observed in the specimens with smaller thickness, and the peak strain is also increased slightly. There are some deviations between analytical results and experimental data, but the relative errors are reduced as the strain rates of RPC-Filled Steel Tubes increased.
 

 

关键词

霍普金森压杆 / 冲击荷载 / 钢管RPC / 应力-应变曲线 / 动态行为

Key words

Split Hopkinson Pressure Bar (SHPB) / impact loading / RPC-Filled Steel Tube / stress-strain curve / dynamic behavior

引用本文

导出引用
陈万祥,2,郭志昆1,姜 猛1,闫凤国1,顾娟1. 钢管RPC抗冲击压缩特性及极限强度确定方法[J]. 振动与冲击, 2016, 35(20): 160-171
Chen Wan-xiang1,2, Guo Zhi-kun1, Jiang Meng1, Yan Feng-guo1,Gu Juan1. Dynamic behaviors and ultimate strengths of RPC-Filled Steel Tubes under impact loading[J]. Journal of Vibration and Shock, 2016, 35(20): 160-171

参考文献

[1] Lin-Hai Han, Wei-Hua Wang, Hong-Xia Yu. Experimental behavior of reinforced concrete (RC) beam to concrete-filled steel tubular (CFST) column frames subjected to ISO-834 standard fire [J]. Engineering Structures, 2010, 10:3130-3144.
[2] 林震宇,吴炎海,沈祖炎. 圆钢管活性粉末混凝土轴压力学性能研究 [J]. 建筑结构学报,2005,26(4):52-57.
Lin Zhenyu, Wu Yanhai, Sen Zuyan. Research on behavior of RPC filled circular steel tube column subjected to axial compression [J]. Journal of Building Structures, 2005, 26(4):52-57.
[3] Tian Zhimin, Wu Ping’an, Jia Jianwei. Dynamic response of RPC-filled steel tubular columns with high load carrying capacity under axial impact loading [J]. Transactions of Tianjin University, 2008, 14(6): 441-449.
[4] Xiao Yan, Shan Jian-hua, Zheng Qiu. Experimental studies on concrete filled steel tubes under high rate loading [J]. Journal of Material in Civil Engineering (ASCE). 2009, 21(10):569-577.
[5] 冯建文.钢管活性粉末混凝土柱的力学性能研究 [D].北京:清华大学,2008.
Feng Jian-wen. Study on mechanical behavior of reactive powder concrete filled steel tubular columns [D]. Beijing: Tsinghua University, 2008.
[6] 单建华.钢管混凝土在冲击荷载作用下试验研究和有限元分析 [D].长沙:湖南大学,2007.
Shan Jian-hua.Experimental reseach and finite element analysis of concrete filled steel tubes under impact load [D]. Changsha: Hunan University, 2007.
[7] 李珠,李宝成,李永刚,等. 钢管混凝土短柱轴向冲击动力特性的探讨 [J]. 太原理工大学学报,2006,37(4):383-385.
Li Zhu,Li Bao-cheng,Li Yong-gang,et al.The research of the dynamic property of steel tube-confined concrete short column under axial impact [J]. Journal of Taiyuan University of Technology, 2006, 37(4):383-385.
[8] 郑秋.钢管混凝土短柱抗冲击性能试验研究及有限元分析 [D]. 长沙:湖南大学, 2008.
Zheng Qiu.Experimental research and finite element analysis of concrete filled steel tube short columns under impact load [D]. Changsha: Hunan university, 2008.
[9] Huo JS, Huang CW, Xiao Y. Effects of sustained axial load and cooling phase on post-fire behavior of concrete-filled steel tubular stub columns [J]. Journal of Constructional Steel Research, 2009, 65(8-9):1664-1676.
[10] 中华人民共和国国家标准GB50010-2002. 混凝土结构设计规范 [S]. 北京:中国建筑工业出版社,2002:22-27,1664-1676.
[11] 中华人民共和国国家标准GB/T228-2002. 金属材料室温拉伸试验方法 [S]. 北京:中国建筑工业出版社,2002,4-20.
[12] 钟善铜 编著.钢管混凝土结构(第三版) [M].清华大学出版社,2003.
Zhong Shantong. The concrete-filled steel tubular structures (Third Edition) [M]. Tsinghua University Press, 2003.
[13] Jayalekshmi S,Sankar Jegadesh JS. A comparative study on design principles of circular concrete filled steel tubular columns [C]. Proceedings of the Intl. Conf. on Inter Disciplinary Research in Engineering & Technology, 2014, 133-137.
[14] Tian-Yi Song, Lin-Hai Han, Hong-Xia Yu. Concrete filled steel tube stub columns under combined temperature and loading [J]. Journal of Constructional Steel Research, 2010, 66:369-384.
[15] Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society, Section B, 1949, 62(11): 676-700.
[16] Lindholm US. Some experiments with the split Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5): 317-335.
[17] 霍静思,何远明,肖莉平,陈柏生. 高温后钢管混凝土抗多次冲击力学性能试验研究 [J]. 湖南大学学报(自然科学版),2012,39(9):6-10.
Huo Jing-si, He Yuan-ming, Xiao Li-ping, Chen Bai-sheng. Experimantal study on the dynamic behavior of concrete-filled steel tube after exposure to high temperatures under multiple impact loadings [J]. Journal of Hunan University (Natural Sciences), 2012, 39(9): 6-10.
[18] Lai MH, JCM Ho. Uni-axial compression test of concrete-filled-steel-tube columns confined by tie bars [J]. Procedia Engineering, 2013, 57: 662-669.
[19] 钟善桐. 钢管混凝土统一理论 [J]. 哈尔滨建筑工程学院学报,1994,27(6):21-27.
Zhong Shantong. The unified theory of concrete filled steel tube (CFST) [J]. Journal of Harbin Archit. & Civ. Eng. Inst, 1994, 27(6): 21-27.
[20] Lin-Hai Han, Chuan-Chuan Hou, Xiao-Ling Zhao, Kim JR. Rasmussen. Behaviour of high-strength concrete filled steel tubes under transverse impact loading [J]. Journal of Constructional Steel Research, 2014, 92(1):25-39.
[21] British Standard Institutions BS 5400 [S]. Concrete and Composite Bridges, U.K. 2000.
[22] Schneider SP. Axially loaded concrete-filled steel tubes [J]. Journal of Structural Engineering, 1998, 124(10): 1125-1138.
[23] Lu ZH and Zhao YG. Mechanical behavior and ultimate strength of circular CFT columns subjected to axial compression loads [J]. 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[24] Jones N. Structural impact [M]. Cambridge, New York: Cambridge University Press, 1988.
[25] Comité Euro-International du Béton. Concrete structure under impact and impulsive loading [R]. CEB Bulletin No. 187, Lausanne Switzerland, 1988.
[26] 谭克锋,蒲心诚,蔡绍怀. 钢管超高强混凝土的性能与极限承载力的研究 [J]. 建筑结构学报, 1999, 20(1):10-14.
Tan Kefeng, Pu Xincheng, Cai Shaohuai. Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes [J]. Journal of Building Structures, 1999, 20(1):10-14.
[27] 康希良,赵鸿铁,薛建阳,仵建斌. 钢管混凝土套箍机理及组合弹性模量的理论分析 [J]. 工程力学, 2007, 24(11):121-125.
Kang Xi-liang, Zhao Hong-tie, Xue Jiang-yang, Wu Jian-bin. Theoretic analysis for hooping mechanism and composite elastic modulus of CFST members [J]. Engineering Mechanics, 2007, 24(11):121-125. 
 

PDF(1714 KB)

782

Accesses

0

Citation

Detail

段落导航
相关文章

/