正三棱柱流致振动试验研究

张军,练继建,刘昉,徐国宾,燕翔

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 17-23.

PDF(1566 KB)
PDF(1566 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 17-23.
论文

正三棱柱流致振动试验研究

  • 张军,练继建,刘昉,徐国宾,燕翔
作者信息 +

Experimental Investigation on Flow Induced Motion of an Equilateral Triangle Prism

  • ZHANG Jun   LIAN Ji-jian   LIU Fang   XU Guo-bin   YAN Xiang
Author information +
文章历史 +

摘要

以典型的圆柱流致振动为参照,进行了水中弹性支撑正三棱柱在不同刚度下的流致振动试验,系统阐述了正三棱柱的振幅与主频变化特性、频谱特征及尾流模式,并揭示了系统刚度对振动响应的影响。试验结果表明,有别于圆柱“自限制”的三个响应区间,正三棱柱的流致振动响应区间分别为:涡激振动分支,涡振-驰振转变分支及驰振分支。随折合流速增大,三棱柱的振动响应并未出现抑制现象。涡激-驰振转变分支中,振幅突增和频率突降,体现了由涡振向驰振的转变趋势;涡激振动上端分支和驰振分支中,柱体振动存在“锁频”现象。系统刚度的变化会造成相同折合流速下正三棱柱尾流模式的差异,进而影响振幅和频率响应。正三棱柱最大响应振幅比为2.11,大于现有圆柱试验的最大响应振幅比1.90。相比于圆柱,正三棱柱更有利于低速水流能的开发利用。

Abstract

According to typical experiments of flow induced motion (FIM) of a circular cylinder, a series of FIM experiments for an equilateral triangle prism elastically mounted in water channel are performed with different system stiffness. The responses of the amplitude and frequency of the prism, along with its frequency spectrum features and wake flow mode, are expounded. Besides, the influence of the system stiffness on the FIM and the wake flow mode is discussed. The test results indicate that the FIM of the prism can be divided into three primary regions: the vortex induced vibration (VIV) branch, the transition branch from VIV to galloping and the galloping branch. Significant FIM response of an equilateral triangle prism on springs develops in an infinite range of flow velocities and without a self-limited response. The transition branch is initiated accompanied with a steep increase in amplitude and a precipitous drop in frequency. The frequency presents “lock-in” phenomenon in the VIV upper branch and the galloping branch. The system stiffness changes the wake flow mode of the prism at the same reduced velocity thus affecting the amplitude and frequency responses. The maximum amplitude ratio for the prism reaches 2.11, which is higher than the maximum amplitude ratio 1.90 for a single circular cylinder. Compared with a circular cylinder, an equilateral triangle prism is more beneficial to improving energy extraction from the flow with low velocity.
 

关键词

正三棱柱 / 流致振动 / 驰振 / 尾流模式 / 系统刚度

Key words

equilateral triangle prism / flow induced vibration / galloping / wake flow mode / system stiffness

引用本文

导出引用
张军,练继建,刘昉,徐国宾,燕翔. 正三棱柱流致振动试验研究[J]. 振动与冲击, 2016, 35(20): 17-23
ZHANG Jun LIAN Ji-jian LIU Fang XU Guo-bin YAN Xiang. Experimental Investigation on Flow Induced Motion of an Equilateral Triangle Prism[J]. Journal of Vibration and Shock, 2016, 35(20): 17-23

参考文献

[1] Blevins RD. Flow-Induced Vibration [M]. New York: Van Nostrand Reinhold, 1990.
[2] 管青海, 李加武, 胡兆同, 等. 栏杆对典型桥梁断面涡激振动的影响研究[J]. 振动与冲击, 2014, 33 (3): 150-156.
GUAN Qing-hai, Li Jia-wu, HU Zhao-tong, et al. Effects of railings on vortex-induced vibration of a bridge deck section [J]. Journal of Vibration and Shock, 2014, 33 (3): 150-156.
[3] 高云, 任铁, 付世晓, 等. 柔性立管涡激振动响应特性试验研究 [J]. 振动与冲击, 2015, 34 (17): 6-11.
Gao Yun, Ren tie, Fu Shi-xiao, et al. Experimental study on response characteristics of VIV of a flexible riser [J]. Journal of Vibration and Shock, 2015, 34 (17): 6-11.
[4] Bernitsas MM, Raghavan K., Ben-Simon Y, et al. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow [J]. Journal of offshore mechanics and arctic engineering-transactions of ASME, 2008, 130(4): 041101-15.
[5] Bernitsas MM, Ben-Simon Y, Raghavan K. The VIVACE converter: model tests at high damping and Reynolds number around 105 [J]. Journal of offshore mechanics and arctic engineering-transactions of ASME, 2009, 131: 011102.
[6] Feng CC. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders [D]. Vancouver: University of British Columbia, 1968.
[7] Khalak A, Williamson CHK. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping [J]. Journal of Fluids and Structures, 1997, 11(8): 973-982.
[8] Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder [J]. Journal of Fluids and Structures, 1988, 2: 355-81.
[9] Raghavan K, Bernitsas MM. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports [J]. Ocean Engineering 2011, 38 (5-6): 719-731.
[10] Alonso G, J Meseguer, I Pérez-Grande. Galloping instabilities of two dimensional triangular cross-section bodies [J]. Experiments in Fluids, 2005, 38:789–95.
[11] Alonso G, Meseguer J. A parametric study of the galloping stability of two dimensional triangular cross-section bodies [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94:241-53.
[12] Alonso G, Meseguer J, Pérez-Grande I. Galloping stability of triangular cross sectional bodies: a systematic approach [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95:928-40.
[13] Iungo GV, Buresti G. Experimental investigation on the aerodynamic loads and wake flow features of low aspect-ratio triangular prisms at different wind directions [J]. Journal of Fluids and Structures, 2009, 25:1119-35.
[14] Camarri S, Salvetti MV, Buresti G. Large-eddy simulation of the flow around a triangular prism with moderate aspect-ratio [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94:309-322.
[15] 徐枫, 欧进萍, 肖仪清. 不同截面形状柱体流致振动的CFD 数值模拟[J]. 工程力学, 2009, 26(4): 7-15.
XU Feng, OU Jin-ping, XIAO Yi-qing. CFD numerical simulation of flow-induced vibration with different cross section cylinder [J]. Engineering Mechanics, 2009, 26(4): 7-15.
[16] Ding L, Zhang L, Wu CM, et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections [J]. Energy Conversion and Management, 2015, 91: 416-426.
[17] 丁林, 张力, 姜德义. 高雷诺数范围内不同形状柱体流致振动特性研究 [J]. 振动与冲击, 2015, 34(12): 176-181.
DING Lin, ZHANG Li, JIANG De-yi. Research on the Flow-induced Motion of Bluff Body with Different Cross Sections at High Reynolds Number [J]. Journal of Vibration and Shock, 2015, 34(12): 176-181.
[18] Morse TL, Govardhan RN, Williamson CHK. The effect of end conditions on the vortex-induced vibration of cylinders [J]. Journal of Fluids and Structures, 2008, 24(8): 1227-1239.
[19] Nemes A, Zhao J, Jacono D, et al. The interaction between flow induced vibration mechanisms of a square cylinder with varying angles of attack [J]. Journal of Fluid Mechanics, 2012, 710:102-30.
[20] Davis JT. Velocity characteristics in the wake of an oscillating cylinder [D]. Cambridge: Massachusetts Institute of Technology, 2001.
[21] Hover FS, Davis JT, Triantafyllou MS. Three-dimensionality of mode transition in vortex-induced vibrations of a circular cylinder [J]. European Journal of Mechanics, B/Fluids, 2004, 23(1):29-40.

PDF(1566 KB)

930

Accesses

0

Citation

Detail

段落导航
相关文章

/