硫酸盐环境下混凝土强度变化规律及微观结构分析

聂良学1,许金余1, 2,刘远飞1,范建设3,王宏伟4

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 203-208.

PDF(1514 KB)
PDF(1514 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 203-208.
论文

硫酸盐环境下混凝土强度变化规律及微观结构分析

  • 聂良学1,许金余1, 2,刘远飞1,范建设3,王宏伟4
作者信息 +

Strength change laws and micro-structure analysis of concrete in sulfate environment

  • NIE Liang-xue1,  XU Jin-yu1, 2, LIU Yuan-fei1, FAN Jian-she3,WANG Hong-wei4
Author information +
文章历史 +

摘要

为深入探究硫酸盐对混凝土强度的削弱规律,对受 溶液腐蚀期间混凝土试件的静态力学性能及声学特性展开研究,并对腐蚀后的试件进行扫描电镜(SEM)分析。结果表明:腐蚀期间,试件静态抗压强度先增大后减小,最大增长率为12.71%,而腐蚀结束后试件静态抗压强度只有同龄期正常环境和浸泡蒸馏水环境下试件强度的82.84%和90.22%;试件纵波波速与抗压强度变化规律类似,亦呈先增大后减小趋势,且腐蚀后仅为正常环境和浸泡蒸馏水环境下试波速的87.95%和91.41%;腐蚀后试件内部结晶体较多,且排列紧密,填充于内部孔隙或分布于孔隙周围。故硫酸盐环境对混凝土具有显著的腐蚀弱化作用,极大地削弱了混凝土性能。

Abstract

In order to delve deep into the regularity of strength degradation of concrete in sulfate environment, a comparative study is done between static compressive strength, acoustic emission and scanning electron microscope (SEM) to understand the micro-level aspect of concrete specimens which have been immersed in sodium sulfate solution. Results of the experimental indicated that: the static compressive strength of specimens increases first and then decrease during corrosive period, the maximum growth rate is 12.71%, the final strength is only 82.84% and 90.22% of specimens which under normal environment and immersion in distilled water respectively; Similarly, the change regularity of longitudinal wave velocity increases first and then decrease, too, and the final velocity is only 87.95% and 91.41% of specimens which under normal environment and immersion in distilled water respectively; It was discovered that there are many crystals inside or around the pores after corrosion, and the crystals are ordered and arranged densely. So the highly salinity environment has a significant effect of weaken the mechanical performance of concrete.
 
 

关键词

硫酸盐 / 腐蚀 / 静态抗压强度 / 纵波波速 / 扫描电镜

Key words

Sulfate / Corrosion / Static compressive strength / Longitudinal wave velocity / Scanning electron microscopy

引用本文

导出引用
聂良学1,许金余1, 2,刘远飞1,范建设3,王宏伟4. 硫酸盐环境下混凝土强度变化规律及微观结构分析[J]. 振动与冲击, 2016, 35(20): 203-208
NIE Liang-xue1, XU Jin-yu1, 2, LIU Yuan-fei1, FAN Jian-she3,WANG Hong-wei4. Strength change laws and micro-structure analysis of concrete in sulfate environment[J]. Journal of Vibration and Shock, 2016, 35(20): 203-208

参考文献

[1]  金祖权, 孙伟, 张云升, 等, 混凝土在硫酸盐氯盐溶液中的损伤过程[J]. 硅酸盐学报, 2006, 34(5): 630-635.
JIN Zu-quan, SUN Wei, ZHANG Yun-sheng, Damage of concrete in sulfate and chloride solution[J]. Journal of the Chinese Ceramic Society, 2006, 34(5): 630-635.
[2]  Hekal E E, Kishar E, Mostafa H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427.
[3]  Song H, Chen J. Effect of damage evolution on poisson's ratio of concrete under sulfate attack[J]. Acta Mechanica Solida Sinica, 2011, 24(3): 209-215.
[4]  Sun C, Chen J, Zhu J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction and Building Materials, 2013, 39: 39-45.
[5]  王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理[J]. 水利学报, 2006, 37(8): 958-968.
WANG Hai-long, LI Qing-bin. Micro-mechanism of static and dynamic strengths for saturated concrete[J]. Journal of Hydraulic Engineering, 2006, 37(8): 958-968.
[6]  吴福飞, 侍克斌, 董双快, 等. 硫酸盐镁盐复合侵蚀后混凝土的微观形貌特征[J]. 农业工程学报, 2015, 31(9): 140-146.
Wu Fufei, Shi Kebin, Dong Shuangkuai, et al. Microstructure characteristics of concrete after erosion of magnesium salts and sulfates[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(9): 140-146.
[7]  高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究[D]. 北京, 清华大学, 2010.
[8]  Komlos K, Popovics S, Nürnbergerova T, et al. Ultrasonic pulse velocity test of concrete properties as specified in various standards[J]. Cement and Concrete Composites, 1996, 18(5): 357-364.
[9]  Tamás F, Balázs G L. Fracture mechanics and structural concrete[J]. Cement & Concrete Research, 1996, 77(1):1289-1289.
[10] Sarkar1 S, Mahadevan S, Meeussen J C L, et al. Sensitivity analysis of damage in cement materials under sulfate attack and calcium leaching[J]. Journal of Materials in Civil Engineering, 2012, 24(4): 430-440.
[11] 赵明阶, 徐蓉. 用弹性波速计算正交各向异性岩体的裂隙张量[J]. 重庆建筑大学学报, 1999, 21(2): 42-48.
Zhao Mingjie, Xu Rong. A calculating method for the crack tensor of the orthotropic rockmass by the elastic wave velocity[J]. Journal of Chongqing Jianzhu University, 1999, 21(2): 42-48.
[12] 赵明阶, 吴德伦. 单轴加载条件下岩石声学参数与应力的关系研究[J]. 岩石力学与工程学报, 1999, 18(1): 50-54.
Zhao Mingjie, Wu Delun. Ultrasonic velocity and attenuation of rock under uniaxial loading[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(1): 50-54.
[13] Luo X, Sun W, Chan S Y N. Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete[J]. Cement and Concrete Research, 2000, 30(3): 379-383.
[14] Gregerová M, Všianský D. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy[J]. Materials Characterization, 2009, 60(7): 680-685.
[15] 王信刚, 马保国, 付洪波. 梯度结构混凝土的界面力学性能与微观结构[J]. 建筑材料学报, 2010, 13(1):100-104.
WANG Xin-gang, MA Bao-guo, FU Hong-bo. Interface mechanical property and microstructure of gradient structural concrete(GSC) [J]. Journal of Building Material, 2010, 13(1):100-104.

PDF(1514 KB)

Accesses

Citation

Detail

段落导航
相关文章

/