为了有效控制工业平缝机的运行噪声,有必要开展噪声源识别和运行噪声预测研究。首先基于分部运行法进行平缝机振动与噪声信号的测试实验,并对采集的振动信号进行低通滤波和去趋势项处理;然后根据分部运行下的噪声功率谱密度,确定出主要的噪声源是刺布挑线机构和旋梭机构;最后分别以主要噪声源附近的振动加速度信号和运行噪声声压为自变量和因变量,基于核偏最小二乘回归方法建立运行噪声的预测模型,开展了运行噪声对振动加速度的敏感性分析。噪声预测模型的精度分析表明,振动加速度与噪声声压之间的非线性关系能被准确建模,运行噪声预测模型具有非常高的精度。敏感性分析进一步确定,平缝机运行噪声对刺布挑线机构Y方向的振动最敏感,其次是旋梭机构Z方向的振动。
Abstract
In order to effectively control the operating noise of the industrial sewing machine, the noise source identification and operating noise prediction are very necessary. Firstly, an experiment for acquiring the signals of vibration and noise of the sewing machine is implemented based on the method of separated operation, and the vibration signals are processed by low pass filtering and anti-trend processing. Then the main noise sources are identified by the power spectral density of operating noise under separated operation, they are the mechanism of piercing cloth and pick-up thread and the rotary shuttle mechanism. Finally, the vibration accel-erations and the noise pressures nearby the main noise sources are treated as the independent variables and de-pendent variable, respectively, with which the operating noise predictive model is established based on the kernel partial least squares method. The accuracy analysis of the predictive model shows that the nonlinear relationship between the vibration accelerations and noise sound pressure can be accurately modeled, and the model has a very high accuracy. The sensitivity analysis further determines that the operating noise is the most sensitive to the vibration accelerations in Y direction of the mechanism of piercing cloth and pick-up thread, followed by the vibration accelerations of the rotating shuttle mechanism in Z direction.
关键词
噪声源识别 /
噪声预测 /
分部运行 /
核偏最小二乘 /
敏感性分析 /
工业平缝机
{{custom_keyword}} /
Key words
Noise source identification /
Noise prediction /
Separated operation /
Kernel partial least squares /
Sensitivity analysis /
Industrial sewing machine
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zajaczkowski J. Vibrations of a crank-shaft in a sewing machine induced by a zigzag mechanism[J]. International Journal of Clothing Science and Technology, 1999, 11(1): 53-59.
[2] 褚志刚, 杨洋. 基于非负最小二乘反卷积波束形成的发动机噪声源识别[J]. 振动与冲击, 2013, 32(23): 75-81.
CHU Zhi-gang, YANG Yang. Noise source identification for an engine based on FFT-non-negative least square ( NNLS) deconvolution beamforming [J]. Journal of Vibra-tion and Shock, 2013, 32(23): 75-81.
[3] 郝鹏, 郑四发, 连小珉. 运动噪声源的时域传递路径模型及贡献率分析[J]. 机械工程学报, 2012, 48(8): 104-109.
HAO Peng, ZHENG Si-fa, LIAN Xiao-min. Time-domain transfer path modal and contribution analysis of moving noise sources[J]. Journal of Mechanical Engineering, 2012, 48(8): 104-109.
[4] 袁旻忞, Anne Shen, 鲁帆, 等. 高速列车运行工况下噪声传递路径及声源贡献量分析[J].振动与冲击, 2013, 32(21): 189-196.
YUAN Min-min, Anne Shen, LU Fan, et al. Operational transfer path analysis and noise sources contribution for China railway high-speed (CHR)[J]. Journal of Vibration and Shock, 2013, 32(21): 189-196.
[5] 冯仁华, 刘敬平, 付建勤, 等. 一种高效的发动机辐射噪声计算方法研究[J]. 振动与冲击, 2014, 33(18): 198-203.
FENG Ren-hua, LIU Jing-ping, FU Jian-qin, et al. A fast and effective calculation method for engine radiated noise [J]. Journal of Vibration and Shock, 2014, 33(18): 198-203.
[6] Fan RP, Su ZQ, Meng M, et al. Application of sound intensity and partial coherence to identify interior noise sources on the high speed train[J]. Mechanical Systems and Signal Processing, 2014, 46(2):481-493.
[7] 岳东鹏, 郝志勇, 刘月辉, 等. 柴油机表面辐射噪声源识别的研究. 汽车工程, 2004, 26(5): 613-615.
YUE Dong-peng, HAO Zhi-yong, LIU Yue-hui, et al. A study on surface noise sources identification for diesel en-gine[J]. Automotive Engineering, 2004, 26(5): 613-615.
[8] Chandra N, Raja S and Nagendra Gopal KV. Vi-bro-acoustic response and sound transmission loss analysis of functionally graded plates[J]. Journal of Sound and Vi-bration, 2014, 333(22): 5786-5802.
[9] Guasch O, AragonèsÀ and Janer M. A graph cut strat-egy for transmission path problems in statistical energy analysis[J]. Mechanical Systems and Signal Processing, 2012, 30(1): 343-355.
[10] Dhandole S and Modak SV. A constrained optimiza-tion based method for acoustic finite element model updat-ing of cavities using pressure response. Applied Mathe-matical Modelling 2012; 36(1): 399-413.
[11] QB/T 1178-2006 工业缝纫机 振动的测试方法[S]. 中华人民共和国国家发展和改革委员会, 2006.
QB/T 1178-2006. Industrial sewing machine Testing me-thod of vibration[S]. National Development and Reform Commission, 2006.
[12] QB/T 1177-2007 工业缝纫机 噪声级的测试方法[S]. 中华人民共和国国家发展和改革委员会, 2007.
QB/T 1177-2007. Industrial sewing machine Testing me-thod of sound pressurelevel[S]. National Development and Reform Commission, 2007.
[13] 王济, 胡晓. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 2006.
WANG Ji, HU Xiao. Application of MATLAB in vibration signal process[M]. Beijing: China Water Power Press, 2006.
[14] Kim K, Lee JM and Lee IB. A novel multivariate re-gression approach based on kernel partial least squares with orthogonal signal correction[J]. Chemometrics and Intelli-gent Laboratory Systems, 2005, 79(1-2): 22-30.
[15] 张曦, 陈世和, 陈锐民, 等. 基于核偏最小二乘的电厂热力参数预测与估计[J]. 中国电机工程学报, 2011, 31(增刊): 193-199.
ZHANG Xi, CHEN Shi-he, CHEN Rui-min, et al. Parame-ter prediction and estimation of turbine generator based on kernel partial least Squares[J]. Proceedings of the CSEE, 2011, 31(Supplement): 193-199.
[16] Wold S, Sjöström M, Eriksson L. PLS-regression: A basic tool of chemometrics[J]. Chemometrics and Intelli-gent Laboratory Systems, 2001, 58(2): 109-130.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}