为了能获取更为准确的轴承响应以预测齿轮箱体噪声,提出了适用于平行轴外啮合圆柱齿轮-轴-轴承-箱体系统动力学建模的有限单元法。该方法将连续分布的齿轮系统离散为轴段单元、啮合单元和轴承-基础单元,通过建立模块化的单元运动方程,根据单元连接关系生成矩阵组装规则,实现系统整体动力学模型的自动建立。模型中考虑了轴段剪切效应的影响,推导了齿轮副在不同旋向和转向时的弯-扭-轴-摆全自由度耦合振动方程,提出了箱体柔性对转子系统振动耦合作用的计入方法。以一对单级斜齿轮传动为例,通过与已有实验数据的对比验证了此方法的有效性。结果表明,采用有限元法计算齿轮副和轴承响应比常规集中质量法具有更高的求解精度。利用此方法编写了规范化程序,为工程中处理多级复杂平行轴齿轮系统的振动和噪声问题提供了有效手段。
Abstract
In order to obtain more accurate bearing responses to predict the noise of gearbox, a comprehensive fully coupled dynamic model of parallel-shaft external cylindrical gear-shaft-bearing-case system is proposed. The continuous gear system is divided into discrete shaft element, mesh element and bearing-base element. The modularized equations of motion for each element are built, and the dynamic model of the system is automatically created according to the relationship between different elements. The shear deformation effect of the shaft element is considered in the model. The dynamic equations with all degrees of freedom coupled (transverse-rotational-axial-pendular) are given as well, and the effect of different gear hand direction and rotating direction are considered. Then the coupling vibration between gear rotor system and case is also introduced in the analysis. A single-stage helical gear pair is taken as an example to validate the proposed method by comparing the predicted data with the experimental ones. The results show that the finite element method has higher precision than the common lumped mass method to predict the dynamic response for both gears and bearings. A standardized program for the proposed method has been created, which can provide an effective means to predict the vibration and noise of multi-stage complex parallel shaft gear transmissions in engineering practice.
关键词
有限元法 /
齿轮 /
轴承 /
耦合振动 /
啮合刚度
{{custom_keyword}} /
Key words
Finite element method /
Gear /
Bearing /
Coupled vibration /
Mesh stiffness
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Velex P, Maatar M. A Mathematical model for analyzing the influence of shape deviations and mounting errors on gear dynamic behaviour[J]. Journal of sound and vibration, 1996,191(5):629-660.
[2] Parker R G. Non-linear dynamic response of a spur gear pair: modeling and experimental comparisons[J]. Journal of Sound and Vibration, 2000, 237(3):435-455.
[3] 王峰, 方宗德, 李声晋. 多载荷工况下人字齿轮传动系统振动特性分析[J]. 振动与冲击, 2013, 31(1):49-52.
WANG Feng, FANG Zong-de, LI Sheng-jin. Dynamic characteristics of a double helical gear under multi-load[J]. Journal of Vibration and Shock, 2013, 31(1):49-52.
[4] 李润方, 王建军. 齿轮系统动力学[M]. 北京: 科学出版社, 1996.
[5] Neriya S V, Bhat R B and Sankar T S. The coupled Torsional-flexural vibration of a geared shaft system using finite element method[J]. The Shock and Vibration Bulletin, 1985, 55(3):13-25.
[6] Özgüven H N and Özkan Z L. Whirl speeds and unbalance response of multi bearing rotors using finite elements[J], Journal of Vibration, Acoustics, Stress and Reliability in Design, 1984, 106(1):72-79.
[7] Kahraman A, Özgüven H N and Houser D R. Dynamic analysis of geared rotors by finite elements[J]. Journal of Mechanical Design, Transactions of the ASME, 1992, 114(3): 507-514.
[8] Kubur M, Kahraman A and Zini D M. Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment[J]. Journal of Vibration and Acoustics, Transactions of the ASME, 2004, 126(7), 398-406.
[9] 蒋庆磊, 吴大转, 谭善光等. 齿轮传动多转子耦合系统振动特性研究[J]. 振动工程学报, 2010, 23(3):254-259.
JIANG Qing-lei, WU Da-zhuan, TAN Shan-guang. Development and application of a model for coupling geared rotors system[J]. Journal of Vibration Engineering, 2010, 23(3):254-259.
[10] 崔亚辉, 刘占生, 叶建槐等. 复杂多级齿轮-转子-轴承系统的动力学建模和数值仿真[J]. 机械传动, 2009, 33(6):44-48.
CUI Ya-hui, LIU Zhan-sheng, YE Jian-huai, et al. Dynamic model and numerical simulation of multi-stage gear-rotor-bearing system[J]. Mechanical Transmission, 2009, 33(6):44-48.
[11] 陈小安, 缪莹赟, 杨为, 等. 基于有限单元法的多间隙耦合齿轮传动系统非线性动态特性分析[J]. 振动与冲击, 2010, 29(2):46-49.
CHEN Xiao-an, MIAO Ying-yun, YANG Wei, et al. Nonlinear dynamic characteristics analysis of a gear transmission system with multiple clearances based on finite element method[J]. Journal of Vibration and Shock, 2010, 29(2):46-49.
[12] Zhu C, Xu X, Liu H, et al. Research on dynamical characteristics of wind turbine gearboxes with flexible pins[J]. Renewable Energy, 2014, 68(8): 724-732.
[13] 徐斌, 高跃飞, 余龙. MATLAB有限元结构动力学分析与工程应用[M]. 北京: 清华大学出版社, 2009.
[14] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
WANG Xu-cheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003.
[15] Kahraman A., Blankenship G. W.. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64(3): 217-226.
[16] Kahraman A., Blankenship G. W.. Effect of involute contact ratio on spur gear dynamics[J]. Journal of Mechanical Design, 1999, 121(3): 112-118.
[17] 常乐浩, 刘更, 吴立言. 齿轮综合啮合误差的计算方法及对系统振动的影响[J]. 机械工程学报, 2015, 51(1): 123-130.
CHANG Le-hao, LIU Geng and WU Li-yan. Determination of composite meshing errors and its influence on the vibration of gear system[J]. Chinese Journal of Mechanical Engineering, 2015, 51(1): 123-130.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}