基于局部特征尺度分解和JRD距离的液压泵性能退化状态识别方法

田再克,李洪儒,谷宏强,许葆华

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 54-59.

PDF(1339 KB)
PDF(1339 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 54-59.
论文

基于局部特征尺度分解和JRD距离的液压泵性能退化状态识别方法

  • 田再克,李洪儒,谷宏强,许葆华
作者信息 +

Degradation Status Identification of Hydraulic Pump Based on Local Characteristic-Scale Decomposition and JRD

  • Tian Zaike    Li Hongru  Gu Hongqiang  Xu Baohua
Author information +
文章历史 +

摘要

针对液压泵振动信号通常具有非线性强与信噪比低的特点,提出了基于局部特征尺度分解(Local Characteristic-Scale Decomposition, LCD)与JRD(Jensen-renyi divergence)距离的液压泵性能退化状态识别方法。该方法首先对原始振动信号进行局部特征尺度分解,得到不同特征尺度下的内禀尺度分量(Intrinsic Scale Component, ISC);然后,提取包含主要退化特征信息的ISC分量的Renyi熵,以此作为退化特征量;最后,通过计算不同特征量之间的JRD距离来判断液压泵的退化状态。将该方法应用于液压泵实测数据,结果表明,基于局部特征尺度分解和JRD距离的退化状态识别方法能够有效识别液压泵的性能退化状态。

Abstract

To solve the problem that the vibration signals of hydraulic pump usually appear with nonlinear and low signal to noise ratio. This paper presents a degradation fault feature extraction based on Local Characteristic-Scale Decomposition (LCD) and Jensen-renyi divergence (JRD). First of all, the hydraulic pump vibration signals was decomposed into a set of intrinsic scale components  (ISC) by LCD;  and then the renyi entropy of the first few ISC components which contains the main degradation feature information is calculated, and adopted as degradation feature vectors; Finally, the JRD between different degradation feature vectors is employed to diagnose the degradation status of hydraulic pump. By analyzing actural example data, the results show that the proposed method can recognise the degradation status of hydraulic pump effectively.

关键词

退化特征提取 / 局部特征尺度分解 / Renyi熵 / JRD距离

Key words

degradation feature extraction / Local Characteristic-Scale Decomposition / Renyi entropy / Jensen-renyi divergence

引用本文

导出引用
田再克,李洪儒,谷宏强,许葆华. 基于局部特征尺度分解和JRD距离的液压泵性能退化状态识别方法[J]. 振动与冲击, 2016, 35(20): 54-59
Tian Zaike Li Hongru Gu Hongqiang Xu Baohua . Degradation Status Identification of Hydraulic Pump Based on Local Characteristic-Scale Decomposition and JRD[J]. Journal of Vibration and Shock, 2016, 35(20): 54-59

参考文献

[1] Jun Du, Shaoping Wang, Haiyan Zhang. Layered clustering multi-fault diagnosis for hydraulic piston pump [J]. Mechanical Systems and Signal Processing, 2013,(36):487-504.
[2] Zhen Zhao, Mingxing Jia, Fuli Wang, et al. Intermittent chaos and sliding window symbol sequence statistics-based early fault diagnosis for hydraulic pump on hydraulic tube tester[J]. Mechanical Systems and Signal Processing, 2009,(23):1573-1585.
[3]  郑近德,程军圣,杨宇.部分集成局部特征尺度分解:一种新的基于噪声辅助数据分析方法[J].电子学报,2013,41(5):1030-1035.
Zheng Jinde, Cheng Junsheng, Yang Yu. Partly Ensemble Local Characteristic-Scale Decomposition:A New Noise Assisted Data Analysis Method[J]. Acta Electronica Sinica, 2013,41(5):1030-1035.
[4]  郑近德,程军圣,杨宇. 基于LCD和排列熵的滚动轴承故障诊断[J]. 振动、测试与诊断,2014,34(5):802-806.
Zheng Jinde, Cheng Junsheng, Yang Yu. A Rolling Bearing Fault Diagnosis Method Based on LCD and Permutation Entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2014,34(5):802-806.
[5] 王冰,李洪儒,许葆华. 基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态识别[J]. 振动与冲击,2013,32(22):123-128.
Wang Bing, Li Hongru, Xu Baohua. Motor bearing forecast extracting and degradation status identification based on multi-scale morphological decomposition spectral entropy[J]. Journal of Vibration and Shock, 2013,32 (22) :124-128.
[6]  王余奎,李洪儒,叶鹏. 基于 FastPW 和 CNC 降噪的液压泵振动信号预处理方法[J]. 振动与冲击,2014,33(24):143-149.
Wang Yukui, Li Hongru, Ye Peng. Preprocessing method of hydraulic pump vibration signals based on Fast PW and CNC de-noising[J]. Journal of Vibration and Shock, 2014,33(24):143-149.
[7] 姚志均,刘俊涛,赖重远,刘文予. 一种改进的 JSD 距离的空间直方图相似度度量及目标跟踪[J]. 自动化学报,2011,37(12):1464-1473.
Yao Zhijun, Liu Juntao, Lai Chongyuan, Liu Wenyu. An Improved Jensen-Shannon Divergence Based Spatiogram Similarity Measure for Object Tracking[J]. Acta Automatica Sinica, 2011,37(12):1464-1473.
[8]  孙磊,徐钊. 基于Jensen-Shannon差异的可变剪接分析[J]. 江苏师范大学学报,2014,30(4):61-66.
Sun Lei, Xu Zhao. Alternative spicing analysis based on Jensen-Shannon divergence[J]. Journal of Jiangsu Normal University(Natural Science Edition), 2014,30(4):61-66.
[9] P. Boškoski, D.J. Juričić, Fault detection of mechanical drives under variable operating conditions based on wavelet packet Rényi entropy signatures[J]. Mechanical Systems and Signal Processing. 2012,(31):369–381.
[10] R.Li, P.Sopon, D.He. Fault features extraction for bearing prognostics[J]. Journal of Intelligence Manufatura. 2012, (23):313–321.
[11]D.Xu, D.Erdogmuns, Rényi's entropy, divergence and their nonparametric estimators[C]//Information Theoretic Learning, Springer, NewYork. 2010: 47–102.
[12] 郭艳平,颜文俊,包哲静,杨 强. 基于经验模态分解和散度指标的风力发电机滚动轴承故障诊断方法[J]. 电力系统保护与控制,2012,40(17):83-88.
Guo Yanping, Yan Wenjun, Bao Zhejing, Yang Qiang. Fault diagnosis of bearing in wind turbine based on empirical mode decomposition and divergence index[J]. Power System Protection and Control, 2012,40(17):83-88.
[13] Pavle Boškoski,  Matej Gašperin, Dejan Petelin, Dani Juričić. Bearing fault prognostics using Rényi entropy based features and Gaussian process models[J]. Mechanical Systems and Signal Processing. 2015(52-53):327-337.
[14] 李洪儒,许葆华. 某型导弹发射装置液压泵故障预测研究[J]. 兵工学报,2009,30(7):900 -906.
Li Hongru, Xu Baohua. Fault prognosis of hydraulic pump in the missile launcher[J]. Acta Armamentrii, 2009, 30(7):900 – 906.
[15] Yan Ruqiang, Liu Yongbin, Gao X. Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines[J]. Mechanical Systems and Signal Processing. 2012,29(5):474-484.
[16]P.Boškoski, D.J.Juričić, Rényi entropy based statistical complexity analysis for gear fault prognostics under variableload[C]// Condition Monitoring of Machinery in Non-Stationary Operations, Springer, Berlin, Heidelberg, 2012: 25–32.
[17] 张龙,黄文艺,熊国良.基于多尺度熵的滚动轴承故障程度评估[J]. 振动与冲击, 2014,33(9):185-189.
Zhang Long, Huang Wenyi, Xiong Guoliang. Assessment of rolling element bearing fault severity using multi-scale entropy[J]. Journal of Vibration and Shock, 2014,33(9):185-189.
[18] Yukui Wang, Hongru Li, Peng Ye. Fault Feature Extraction of Hydraulic Pump Based on CNC De-noising and HHT [J].J Fail. Anal. and Preven, 2015,15(1):139-151.

PDF(1339 KB)

Accesses

Citation

Detail

段落导航
相关文章

/