永磁型无轴承电机自适应振动抑制控制

张涛1,倪伟1,莫丽红1,贾红云2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 65-70.

PDF(1829 KB)
PDF(1829 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (20) : 65-70.
论文

永磁型无轴承电机自适应振动抑制控制

  • 张涛1,倪伟1,莫丽红1,贾红云2
作者信息 +

Adaptive Vibration-Rejection Control on Permanent-Magnet-Type Bearingless Motor

  • ZHANG Tao1, NI Wei1, MO Lihong2, JIA Hongyunu3
Author information +
文章历史 +

摘要

为解决在永磁型无轴承电机转子抑制振动控制时,高频噪声信号降低振动信号频率辨识精度,导致系统不稳定的难题,本文介绍了一种基于多频率跟踪算法的转子自适应振动抑制控制策略。分析了振动信号频率辨识误差形成机理,推导了自适应多频率跟踪算法,构建了转子振动抑制控制系统,采用李雅普诺夫稳定性理论分析了自适应多频率跟踪算法和基于该算法的振动抑制控制系统稳定性。将其应用到永磁型无轴承电机转子磁场定向控制系统中,进行了仿真和实验研究。研究结果表明,自适应多频率跟踪算法可快速准确辨识振动信号频率,基于该方法的振动抑制控制系统,可有效抑制转子振动,提高转子旋转精度。

Abstract

To solve the difficulty, which the high frequency noise signal seriously affects the identification precision of vibration frequency, the vibration-rejection control system is unstable in permanent-magnet-type bearingless motor. In this paper, vibration-rejection control method based on adaptive multi-frequency tracking algorithm was presented. The production mechanism of vibration frequency identification error is analyzed. The adaptive multi-frequency tracking algorithm is induced and the control system is constructed. Using Lyapunov stability theory, the adaptive multi-frequency tracking algorithm and the control system asymptotically stability are proved. The method is added into the rotor field oriented control system of permanent-magnet-type bearingless motor and the simulation and experimental researches are executed. The research results have shown that the adaptive multi-frequency tracking algorithm can identify the vibration frequency quickly and correctly. The vibration-rejection control system can suppress the rotor vibration and the rotational accuracy is improved.
 

 

关键词

永磁型无轴承电机 / 无轴承电机 / 振动抑制 / 质量不平衡 / 自适应控制

Key words

permanent-magnet-type bearingless motor / bearingless motor / vibration-rejection / mass unbalance / adaptive control.

引用本文

导出引用
张涛1,倪伟1,莫丽红1,贾红云2. 永磁型无轴承电机自适应振动抑制控制[J]. 振动与冲击, 2016, 35(20): 65-70
ZHANG Tao1, NI Wei1, MO Lihong2, JIA Hongyunu3. Adaptive Vibration-Rejection Control on Permanent-Magnet-Type Bearingless Motor[J]. Journal of Vibration and Shock, 2016, 35(20): 65-70

参考文献

[1] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3):258-264.
Wang Fengxiang. Study on design feature and related technology of high speed electrical machines [J].Journal of Shenyang University of Technology, 2006, 28(3): 258-246.
[2] 王继强, 王凤翔, 鲍文博等. 高速永磁电机转子设计与强度分析[J].中国电机工程学报, 2005, 25(15):2843-2848.
Wang Jiqiang, Wang Fengxiang, Bao Wenbo, etal. Rotor design and strength analysis of high speed permanent magnet machine[J]. Proceedings of the CSEE, 2005, 25(15): 2843-2848.
[3] M. Nasir, U. Uddin. Control of interior type PM synchronous motor for high speed operations-summary [J]. Power Engineering Society General Meeting, 2004. Vol 2, pp:1280-1283。
[4] T. Schneider, A. Binder. Design and evaluation of a 60000 rpm permanent magnet bearingless high speed motor[J]. IEEE Transactions on industry applications, 2006, 42(4): 1031-1037.
[5] A. Binder, T. Schneider, M. Klohr. Fixation of buried and surface-mounted magnets in high-speed permanent-magnet synchronous machines[J]. IEEE Transactions on industry applications, 2006, 42(4): 1031-1037.
[6] V. Elnaz, S. Bahram, B. Stuart. Estimation and rejection of unknown sinusoidal disturbance using a generalized adaptive force balancing method[C].Proceedings of the 2007 American control conference, New York, USA, July 11-13, 2007: 3529-3534.
[7] 张涛,朱熀秋. 无轴承永磁同步电机转子质量不平衡补偿控制[J]. 中国电机工程学报, 2007, 27(15): 33-37.
Zhang Tao, Zhu Huangqiu. Rotor’s mass unbalance compensation control in bearingless permanent magnet-type synchronous motors [J]. Proceedings of the CSEE, 2007, 27(15): 33-37.
[8] 张倩影, 邓智泉, 杨艳. 无轴承开关磁阻电机转子质量偏心补偿控制[J]. 中国电机工程学报, 2011, 31(21): 128-134.
Zhang Qianying, Deng Zhiquan, Yang Yan. Compensation control of rotor mass eccentric in bearingless switched reluctance motors [J]. Proceedings of the CSEE, 2011, 31(21): 128-134.
[9] B. Aleksandar, P. Henk, A. F. Jan. On the speed limits of permanent magnet machines [J]. IEEE Transactions on Magnetics, 2010, 57(1): 220- 227.
[10] I. K. Sung, K. K. Young, H. L. Geun, etal. A novel rotor configuration and experimental verification of interior PM synchronous motor for high speed applications [J]. IEEE Transactions on Magnetics, 2012, 48(2): 843- 846.
[11] Kejian Jiang, Changsheng Zhu. Multi-frequency periodic vibration suppressing in active magnetic bearing-rotor systems via response matching in frequency domain[J] Mechanical Systems and Signal Processing, 2011, 25 : 1417-1429.
[12] K. Nonami, Q. Fan, Unbalance vibration control of magnetic bearing systems using adaptive algorithm with disturbance frequency estimation, in: Proceedings of the 6th International Symposium on Magnetic Bearings, MIT, Cambridge, Masscahusetts, USA, 1998, 663–672.
[13] J. Shi, R. Z. mood, L. Qin. Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals[J]. Control Engineering Practice, 2004, 12 :283–290.
[14] Nan-Chyuan Tsai, Li-Wen Shih, Rong-Mao Lee. Spindle vibration suppression for advanced milling process by using self-tuning feedback control[J]. International Journal of Advanced Manufacture Technology, 2010, 48: 1-10.
[15] Min Xiang, Tong Wei. Autobalancing of high-speed rotors suspended by magnetic bearings using LMS adaptive feedforward compensation[J]. Journal of Vibration and Control, 2014, 20(9) 1428–1436.
[16] Se Young Yoon, Zongli Lin, Paul E.Allaire. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings [M]. Published by Springer-Verlag London, 2013.
[17] U. Keuchel, R. M. Stephan. Microcomputer based adaptive control applied to thyristor-driven DC Motors [M]. Published by Springer-Verlag London limited, 1994.

PDF(1829 KB)

Accesses

Citation

Detail

段落导航
相关文章

/