数控机床高速无轴承异步电动机悬浮子系统RBFNN逆独立解耦控制

孙宇新1,钱忠波1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 196-202.

PDF(1893 KB)
PDF(1893 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 196-202.
论文

数控机床高速无轴承异步电动机悬浮子系统RBFNN逆独立解耦控制

  • 孙宇新1,钱忠波1,2
作者信息 +

Independent RBFNN inverse decoupling control of the levitation subsystem of bearingless induction motor for NC machine

  •  Yuxin SUN1, Zhongbo QIAN1,2
Author information +
文章历史 +

摘要

为了实现对数控机床用高速无轴承异步电动机(bearingless induction motor, BIM)动态解耦控制以实现降低悬浮电主轴抖动,本文提出了一种基于径向基函数神经网络(radial basis function neural network, RBFNN)的悬浮子系统自适应独立控制方法。首先,基于RBFNN构建了气隙磁链观测器,因为RBFNN具有较强的自学习和自适应能力,所以辨识的气隙磁链较为精确;其次,基于Hamilton-Jacobi-Isaacs (HJI)原理设计RBFNN逆系统鲁棒控制器,应用基于HJI不等式的RBFNN辨识系统模型不确定和外界干扰,提高系统的稳定性,悬浮子系统动态独立解耦控制得以实现;最后,将磁链辨识器和逆系统鲁棒控制器组成双RBFNN悬浮子系统逆独立控制系统。仿真和实验结果表明,采用该控制方法BIM系统能获得良好的动、静态性能。

Abstract

To realize the dynamic decoupling of the high speed bearingless induction motor (BIM) for NC machine, a self-adaptive independent control method, based on radial basis function neural network (RBFNN), is proposed in this paper. Firstly, by this method, an air-gap flux observer is built to obtain the more accurate air-gap flux identifier for the strong self learning and adaptive ability of RBFNN. Furthermore, a RBFNN self-adaptive robust controller based on the Hamilton-Jacobi-Isaacs (HJI) is designed to realize decoupling control of the levitation subsystem stably and reliably. Finally, the self-adaptive independent control system with double RBFNN can be composed by the proposed air-gap flux observer and the self-adaptive robust controller. The simulation results have shown that the system has good dynamic and static performance. In addition, this proposed method not only realizes the decoupling control of the torque and radial suspension force, but also that of the radial suspension force in both two degrees of freedom of the system.
 

关键词

无轴承异步电动机;  / 解耦控制;  / 径向基函数神经网络;  / 磁链辨识;  / 鲁棒控制器;  / 数控机床

Key words

BIM / decoupling control system / RBFNN / flux identification / robust controller / NC machine

引用本文

导出引用
孙宇新1,钱忠波1,2. 数控机床高速无轴承异步电动机悬浮子系统RBFNN逆独立解耦控制[J]. 振动与冲击, 2016, 35(21): 196-202
Yuxin SUN1, Zhongbo QIAN1,2. Independent RBFNN inverse decoupling control of the levitation subsystem of bearingless induction motor for NC machine[J]. Journal of Vibration and Shock, 2016, 35(21): 196-202

参考文献

[1] Akira Chiba, Daigo Akamatsu, M Azizur Rahman. An Improved Rotor Resistance Identification Method for Magnetic Field Regulation in Bearingless Induction Motor Drives[J]. IEEE Transactions on Industrial Electronics , 2008, 55(2):852-860.
[2] 邓智泉, 王晓琳, 张宏荃, 等. 无轴承异步电机的转子磁场定向控制[J]. 中国电机工程学报, 2003, 23(3):89-92.
DENG Zhiquan, WANG Xiaolin, ZHANG Hongquan, et al. The nonlinear control of bearingless induction motors based on the motor rotor flux orientation[J]. Proceedings of the CSEE, 2003, 23(3):89-92.
[3]  SUN Xiaodong, CHEN Long, YANG Zebin , ZHU Huangqiu. Speed-Sensorless Vector Control of a Bearingless Induction Motor With Artificial Neural Network Inverse Speed Observer[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4):1357-1366.
[4] Akira Chiba, José Andrés Santisteban. A PWM Harmonics Elimination Method in Simultaneous Estimation of Magnetic Field and Displacements in Bearingless Induction Motors[J]. IEEE Transactions on Industry Applications, 2012, 48(1): 124-131.
[5] 孙晓东, 朱熀秋. 基于神经网络逆系统理论无轴承异步电动机解耦控制[J]. 电工技术学报, 2010, 25(1): 43-49.
SUN Xiaodong, ZHU Huangqiu. Decoupling control of bearingless induction motors based on neural network inverse system method[J]. Transaction of CHINA Electrical Society, 2010, 25 (1): 43-49.
[6] 孙玉坤, 周云红, 嵇小辅. 磁悬浮开关磁阻电机的神经网络逆解耦控制[J]. 中国电机工程学报, 2011, 31(30): 117-123.
SUN Yukun, ZHOU Yunhong, JI Xiaofu. Decoupling Control of Bearingless Switched Reluctance Motor With Neural Network Inverse System Method[J]. Proceedings of the CSEE, 2011, 31(30): 117-123.
[7] 刘国海, 孙玉坤, 张浩, 等. 基于神经网络逆系统的磁悬浮开关磁阻电动机的解耦控制[J]. 电工技术学报, 2005, 20(9):39-43.
LIU Guohai, SUN Yukun, ZHANG Hao, et al. Decoupling control of bearingless switched reluctance motors based on neural network inverse system[J]. Transactions of China Electrotechnical Society, 2005, 20(9): 39-43.
[8] ZHU Huangqiu, ZHOU Yang, LI Tianbo, et a1. Decoupling control of 5 degrees of freedom bearingless induction motors using α-th order inverse system method[J]. Acta Automatica Sinica, 2007, 33(3): 273-278.
[9] 程帅, 姜海博, 黄进, 等. 基于滑模观测器的单绕组多相无轴承电机无位置传感器控制[J]. 电工技术学报, 2012, 27(7): 71-77.
CHENG Shuai, JIANG Haibo, HUANG Jin, et al. Position Sensorless Control Based on Sliding Mode Observer for Multiphase Bearingless Motor with Single Set of Windings[J]. Transaction of CHINA Electrical Society, 2012, 27(7): 71-77.
[10] 王晓琳, 任新宇, 邓智泉, 等. 短路容错控制在多相无轴承永磁同步电机中的可行性分析[J]. 电工技术学报, 2012, 27(3): 105-118.
WANG Xiaolin, REN Xinyu, DENG Zhiquan, et al. Feasibility of Fault-Tolerant Control of Multi-Phase Permanent Magnetic Bearingless Motors with Short-Circuited Phases[J]. Transaction of CHINA Electrical Society, 2012, 27(3): 105-118.
[11] 邓智泉, 王晓琳, 李冰, 等. 无轴承异步电机悬浮子系统独立控制的研究[J]. 中国电机工程学报, 2003, 23(9): 107-111.
DENG Zhiquan, WANG Xiaolin, LI Bing, et al. Study on independent control of the levitation subsystem of bearingless induction motors [J].Proceedings of the CSEE, 2003, 23(9): 107-111.
[12] 孙晓东, 陈龙, 杨泽斌, 等. 考虑偏心及绕组耦合的无轴承永磁同步电机建模[J]. 电工技术学报, 2013, 28(3): 64-70.
SUN Xiaodong, CHEN Long, YANG Zebin, et al. Modeling of a Bearingless Permanent Magnet Synchronous Motor Considering Rotor Eccentricity and Coupling Relationship of Windings[J]. Transaction of CHINA Electrical Society, 2013, 28(3): 64-70.
[13] 王宇, 邓智泉, 王晓琳. 一种新颖的电机磁链辨识算法[J]. 中国电机工程学报, 2007, 27(6): 39-44.
WANG Yu, DENG Zhiquan, WANG Xiaolin. A novel algorithm of motor flux estimation [J]. Proceedings of the CSEE, 2007, 27(6): 39-44.
[14] 夏长亮, 祁温雅, 杨荣 ,等. 基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制[J]. 中国电机工程学报,2004,24 (7): 117-121.
XIA Changliang, QI Wenya, YANG Rong, et al. Identification and model reference adaptive control for ultrasonic motor based on RBF neural network [J]. Proceedings of the CSEE, 2004,24(7): 117-121.
[15] Doncker De, Novotny R W. The universal field oriented (UFO) controller[J]. IEEE Trans. Industry Applications, 1994, 30(1): 92-100.
[16]  刘金琨. RBF神经网络自适应控制MATLAB仿真[M]. 北京:清华大学出版社, 2014.
LIU Jinkun. RBF neural network control for mechanical systems design, analysis,and MATALAB simulation[M]. Beijing: Tsinghua University Press, 2014.
 

PDF(1893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/