基于HHT方法的非稳定工况风力机结构动态响应时频特性分析

杨阳1,李春1,2,叶柯华1,缪维跑1,阳君1,2,高伟3

振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 22-28.

PDF(2133 KB)
PDF(2133 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 22-28.
论文

基于HHT方法的非稳定工况风力机结构动态响应时频特性分析

  • 杨阳1,李春1,2,叶柯华1,缪维跑1,阳君1,2,高伟3
作者信息 +

Analysis of Structural Dynamic Response of Wind Turbine in Time–Frequency Domain under Non-Stationary Operating Condition Based on HHT Method

  • YANG Yang1, LI Chun1, 2,YE Kehua1, MIAO Weipao1, YANG Jun1,2, GAO Wei3
Author information +
文章历史 +

摘要

风速变化剧烈的湍流风场、开机启动、偏航以及紧急停机等典型非稳定运行工况均会增强风力机非线性气动弹性响应,时域和频域的结构动力学响应具有十分明显的非平稳特征。为此,基于湍流风谱和相干结构,建立了速度和方向均剧烈波动的湍流风,在气动-伺服-弹性仿真软件FAST中计算了风力机非稳定工况下的动力学特性,并与GH Bladed计算结果对比,验证了结果的有效性。使用HHT方法分析了塔架和叶片位移的时频特性,结果表明:开机启动阶段塔架和叶片位移均小幅振荡约40s后急剧增加,紧急停机均剧烈振荡约20 s后恢复平稳,偏航导致塔尖侧向位移明显上升。塔架位移响应频率主要集中于一阶振动频率,偏航时幅值增大明显。风轮旋转频率为叶尖摆振的主要谐振动频率,叶片一阶摆振频率受到相干结构影响,紧急停机时由于负气动阻尼影响而使得幅值增大,叶片设计时应适当增大阻尼以减小气动阻尼迅速降低带来的振幅急速增加现象。

Abstract

The typical non-stationary operating condition such as turbulent inflow of wind speed changing dramatically, starting up, yawing motion, and emergency shutdown would enhance the nonlinear aero-elastic response of wind turbine, the structural dynamic responses in time domain and frequency domain both have obvious non-stationary characteristics. The turbulent inflow of velocity and direction both varying intensely is created based on spectral model and coherent structure, the dynamic characteristics under non-stationary conditions are carried out through the aerodynamic-servo-elastic tool called FAST. The numerical calculation is compared with GH Bladed to verify the validity. The dynamic characteristics in time-frequency domain for blade and tower deflections are calculated based on Hilbert-Huang Transform (HHT) method. The results show that the deflections of tower and blade tip fluctuate within a narrow range about 40s and increase rapidly in starting up condition but fluctuate wildly about 20s and return to steady after emergency shutdown. Yawing motion lead to a clearly rise of tower tip deflection in side to side direction. The fluctuation of tower tip deflection at the first order vibration frequency is obvious and increase in yawing motion. The fluctuation blade tip deflection in plane is mainly caused by the rotor rotating and the unforced fluctuation at first order vibration in plane frequency is impacted by coherent structure. The negative aerodynamic damping for the particular mode shape develop the divergent oscillations, enlarging the structural damping should be considered in the initial design of blade to depress amplitude increasing caused by the dramatically decreasing of aerodynamic damping.
 

关键词

风力机 / 湍流风场 / 结构动力学 / HHT方法

Key words

wind turbine / turbulent inflow / structural dynamic characteristics / HHT method

引用本文

导出引用
杨阳1,李春1,2,叶柯华1,缪维跑1,阳君1,2,高伟3. 基于HHT方法的非稳定工况风力机结构动态响应时频特性分析[J]. 振动与冲击, 2016, 35(21): 22-28
YANG Yang1, LI Chun1, 2,YE Kehua1, MIAO Weipao1, YANG Jun1,2, GAO Wei3. Analysis of Structural Dynamic Response of Wind Turbine in Time–Frequency Domain under Non-Stationary Operating Condition Based on HHT Method[J]. Journal of Vibration and Shock, 2016, 35(21): 22-28

参考文献

[1] STEVE Sawyer, KLAUS Rave. Global Wind Report - Annual market update 2014[R]. Brussels: GWEC, 2015.
[2] 岳一松,蔡旭. 风场与风力机模拟系统的设计与实现[J]. 电机与控制应用,2008,35(4):17-21.
YUE Yi-song,CAI Xu.Design and Actualization of Wind Farm and Wind Turbine Imitation System[J].Electric Machines & Control Application.2008,35(4):17-21.
[3] 陈晓明.风场与风力机尾流模型研究[D].兰州:兰州理工大学,2010.
CHEN Xiao-ming.The model research of wind and wind turbine wake[D].LanZhou:LanZhou University of Technology,2010.
[4] Bossanyi E. Short-term stochastic wind prediction and possible control applications[C]//Proceedings of the Delphi workshop on wind energy applications. 1985.
[5] Bilgili M, Sahin B, Yasar A. Application of artificial neural networks for the wind speed prediction of target station using reference stations data[J]. Renewable Energy, 2007, 32(14): 2350-2360.
[6] Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J]. Energy Conversion, IEEE Transactions on, 2004, 19(2): 352-361.
[7] Rathmann O, Mortensen N G, Landberg L. The numerical wind atlas-the KAMM/WAsP method[R]. Risø National Laboratory, 2001.
[8] Fleming P, Gebraad P, van Wingerden J W, et al. The SOWFA super-controller: A high-fidelity tool for evaluating wind plant control approaches[C]//Proceedings of the EWEA Annual Meeting, Vienna, Austria. 2013.
[9] 徐磊,李德源,莫文威,等. 基于非线性气弹耦合模型的风力机柔性叶片随机响应分析[J].振动与冲击,2015,34(10):20-27.
XU Lei, LI De-yuan, MO Wen-wei, etal. Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model[J]. Journal of Vibration and Shock, 2015,34(10): 33-38.
[10] 柯世堂,王同光. 偏航状态下风力机塔架-叶片耦合结构气弹响应分析[J].振动与冲击,2015,34(18):33-38.
KE Shi-tang, Wang Tong-guang. Aero-elastic vibration analysis based on a tower-blade coupled model of wind turbine in yaw motion[J]. Journal of Vibration and Shock, 2015, 34(18): 33-38.
[11] Højstrup J. Velocity spectra in the unstable planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1982, 39(10): 2239-2248.
[12] Olesen H R, Larsen S E, Højstrup J. Modelling velocity spectra in the lower part of the planetary boundary layer[J]. Boundary-Layer Meteorology, 1984, 29(3): 285-312.
[13] Jonkman J M, Buhl Jr M L. FAST user’s guide[J]. National Renewable Energy Laboratory, Golden, CO, NREL/EL-500-38230, 2005.
[14] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454(1971): 903-995.
[15] Huang N E, Wu Z. A review on Hilbert‐Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2).
[16] Shirazi M, Jager D, Wilde S, et al. Lamar low-level jet project interim report[R]. Golden, CO, USA: National Renewable Energy Laboratory, 2004.
[17] Kelley N, Hand M, Larwood S, et al. The NREL large-scale turbine inflow and response experiment: preliminary results[C]//ASME 2002 Wind Energy Symposium. American Society of Mechanical Engineers, 2002: 412-426.
[18] Shirazi M, Jager D, Wilde S, et al. Lamar low-level jet project interim report[R]. Golden, CO, USA: National Renewable Energy Laboratory, 2004.
[19] Wikipedia. Kelvin–Helmholtz instability[EB/OL]. [2015-07-30]. https://en.wikipedia.org/wiki/Kelvin%E2%80%93Helmholtz_instability
[20] Chang T P, Ko H H, Liu F J, et al. Fractal dimension of wind speed time series[J]. Applied Energy, 2012, 93: 742-749.
[21] Jonkman J, Butterfield S, Musial W, et al. Definition of a 5-MW reference wind turbine for offshore system development [R]. National Renewable Energy Laboratory, 2009, NREL/TP 500-38060.
[22] 吴攀,李春,李志敏,等. 风力机不同风况的动力学响应研究[J],中国电机工程学报,2014,34(26):4539-4545.
WU Pan, LI Chun, LI ZHi-min, et al. Research on Dynamic Characteristics Simulation for Wind Turbine With Different Wind[J].Proceedings of the CSEE, 2014, 34(26): 4539-4545.
[23] 王磊,陈柳,何玉林,等. 基于假设模态法的风力机动力学分析[J].振动与冲击,2012,31(11):122-126.
WANG Lei, CHEN Liu, HE Yu-lin, et al. Dynamic analysis of a wind turbine base on assumed mode method[J], Journal of Vibration and Shock, 2012, 31(11): 122-126.

PDF(2133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/