钢筋混凝土柱的非弹性恢复力模型与参数识别

余 波1 李长晋1 吴然立1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 229-235.

PDF(1769 KB)
PDF(1769 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (21) : 229-235.
论文

钢筋混凝土柱的非弹性恢复力模型与参数识别

  • 余  波1     李长晋1     吴然立1
作者信息 +

Inelastic Restoring Force Model and Parameter Identification Method for Reinforced Concrete Column

  • YU Bo 1      LI Chang-jin 1   WU Ran-li  1
Author information +
文章历史 +

摘要

结合Bouc-Wen-Baber-Noori (BWBN) 模型和微分进化(DE)算法,提出了一种能够有效考虑强度退化、刚度退化和捏拢效应等典型滞回特性的钢筋混凝土(RC)柱的非弹性恢复力模型及其参数识别方法,并讨论了破坏模式对RC柱非弹性恢复力模型参数的影响规律。分析结果表明,该模型能够较好地描述弯曲、弯剪和剪切破坏模式下RC柱的典型滞回特性;基于DE算法能够较好地识别RC柱的非弹性恢复力模型参数,具有收敛速度快、识别精度高和全局优化性强等优点;RC柱的非弹性恢复力模型参数与破坏模式密切相关,随着RC柱的破坏模式从弯曲破坏到弯剪破坏和剪切破坏的变化,强度退化、刚度退化、捏拢总滑移量、捏拢斜率等参数均逐渐增大,说明剪切破坏型RC柱的退化效应和捏拢效应更加明显。

Abstract

The inelastic restoring force model and its parameter identification method for reinforced concrete (RC) column were developed by combining the differential evolution (DE) algorithm with the Bouc-Wen-Baber-Noori (BWBN) model, which takes into account the typical hysteretic behaviors such as strength degradation, stiffness deterioration and pinching effect. The influences of failure modes on the model parameters of inelastic restoring force of RC column were also discussed. The analysis results indicate the hysteretic behaviors of restoring force of RC column can be described rationally by the proposed inelastic restoring force model. The proposed method for the parameter identification of RC column is of rapid convergence speed, high accuracy and strong capability of global optimization. The failure mode has a significant effect on the model parameters of inelastic restoring force of RC column. The model parameters including strength degradation, stiffness deterioration, total slip of pinching and pinching slop increase gradually, when the failure mode changes from the flexure failure to flexure-shear failure and shear failure, which implies that the deteriorations and pinching effect of the shear critical column are more obvious than those of the flexure or flexure-shear critical column. 
 

关键词

钢筋混凝土柱 / 非弹性 / 恢复力 / 破坏模式 / 参数识别

Key words

Reinforced concrete column / inelastic / restoring force / failure mode / parameter identification

引用本文

导出引用
余 波1 李长晋1 吴然立1. 钢筋混凝土柱的非弹性恢复力模型与参数识别[J]. 振动与冲击, 2016, 35(21): 229-235
YU Bo 1 LI Chang-jin 1 WU Ran-li 1. Inelastic Restoring Force Model and Parameter Identification Method for Reinforced Concrete Column[J]. Journal of Vibration and Shock, 2016, 35(21): 229-235

参考文献

[1] Foliente, G. C. Hysteresis modeling of wood joints and structural systems [J]. Journal of Structural Engineering-ASCE, 1995, 121(6): 1013-1022.
[2] Ma F, Ng C H, Ajavakom N. On system identification and response prediction of degrading structures [J]. Structural Control & Health Monitoring, 2006, 13(1): 347–364.
[3] Ayoub, A., Chenouda,  M. Response spectra of degrading structural systems [J]. Engineering Structures, 2009, 31(7): 1393-1402.
[4] 叶献国. 基于非线性分析的钢筋混凝土结构地震反应与破损的数值模拟关[J]. 土木工程学报. 1998, 31(4): 3-13.
[5] 赵忠虎, 谢和平, 许博, 刘志宝. 钢筋混凝土压弯构件恢复力特性研究状况[J]. 工业建筑. 2006, 36(1): 62-65.
[6] Sengupta P and Li B. Hysteresis behavior of reinforced concrete walls [J]. Journal of Structural Engineering, 2014, 140(4): 1–18
[7] Sengupta P. and Li B. Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement [J]. Engineering Structures, 2013, 46: 392–406.
[8] 余波, 洪汉平, 杨绿峰. 非弹性体系地震动力响应分析的新型单轴Bouc-Wen模型[J]. 工程力学, 2012, 29(12): 265–273.
[9] Kunnath, S. K., Mander, J. B., Fang, L. Parameter identification for degrading and pinched hysteretic structural concrete systems [J]. Engineering Structures, 1997, 19(3): 224-232.
[10] 薛晓敏, 孙清, 伍晓红, 张陵. 磁流变阻尼器滞回模型参数的敏感性分析及其简化模型[J]. 西安交通大学学报, 2013. 47(7): 1-6.
[11] Zhou, Y., Yi, W. Physical parameters identification of a RC frame structure on elastic foundation [J]. Journal of Structural Stability and Dynamics, 2009, 9(4): 627-648.
[12] Aguira, H., BelHadjSalaha, H., Hamblib., R. Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method [J]. Materials & Design, 2011, 32(1): 48–53.
[13] 唐和生, 周进, 薛松涛, 等. 微分演化算法在结构参数识别中的应用[J]. 振动与冲击, 2010. 29(9): 42–46.
[14] Storn, R., Price, K. Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces [J]. Journal of Global Optimization , 1997, 11(4): 341-359.
[15] Goda K, Hong H P, Lee C S. Probabilistic characteristics of seismic ductility demand of SDOF systems with Bouc-Wen hysteretic behavior [J]. Journal of Earthquake Engineering, 2009, 13(5): 600–622.
[16] 余波, 刘迪, 杨绿峰. 考虑P-Δ效应的桥梁结构震后概率残余位移分析[J]. 振动与冲击, 2014, 33(1): 154-161.
[17] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417.
[18] Saatcioglu M and Ozcebe G. Response of reinforced concrete columns to simulated seismic loading. ACI Structure Journal, 1989, 86(1): 3–12.
[19] Atalay M B and Penzien J. The seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force [R]. Report No. EERC 75-19, University of California, Berkeley, 1975.
[20] Umehara H. and Jirsa J O. Shear strength and deterioration of short reinforced concrete columns under cyclic deformations [R]. Report No. 82-3, Department of Civil Engineering, University of Texas at Austin, Austin Texas, 1982.

PDF(1769 KB)

Accesses

Citation

Detail

段落导航
相关文章

/