为满足发电、泄洪、冲沙、灌溉等需求,坝体往往设有引水发电孔、泄洪中孔、溢流表孔、冲沙底孔等,而这些孔口的存在将显著影响坝体结构的整体抗爆性能。通过建立含孔口坝体、炸药、库水、空气和坝基全耦合模型,对比分析了挡水坝段、引水发电坝段、泄洪中孔坝段、冲沙底孔坝段在水下爆炸冲击荷载作用下的毁伤破坏过程、空间分布规律及毁伤特性,研究坝身孔口对混凝土重力坝动态响应、抗爆性能及毁伤发展过程的影响。结果表明:坝身孔口对大坝的抗爆安全性能具有重要的影响;当炸药起爆位置位于孔口附近时,将使大坝孔口部位产生严重的毁伤破坏。
Abstract
In order to meet the demand for electricity, flood control, sediment-release, irrigation, etc., many orifices have been set in dams. However, the presence of these orifices will significantly impact the antiknock performance of dams. A fully coupled model considering the effects of the orifices-charge-reservoir-air-foundation interaction is established.The failure process, spatial distribution and characteristics of damage for power monolith, flood-discharging monolith and sediment-discharging bottom outlet monolith are compared with those from water retaining monolith. The effects of the orifices on dynamic response, antiknock performance and damage evolution on concrete gravity dams are discussed. The results show that the orifice in the dam have significantly influence on the antiknock safety performance of concrete gravity dams. When the detonation position of the charge near the orifice, the shock wave will cause serious damage to the dam around the orifice zone.
关键词
混凝土重力坝 /
孔口 /
水下爆炸 /
毁伤特性 /
全耦合模型
{{custom_keyword}} /
Key words
concrete gravity dam /
orifices /
underwater explosion /
damage characteristics /
fullycoupled model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 林健勇, 王毅鸣, 付德宇等. 天花板水电站拱坝坝身开孔影响分析研究[J]. 云南水力发电, 2011, 27(3):133-134. LING Jian-yong, WANG Yi-ming, FU De-yu et al. Study on the effect of orifice on Tianhua ban Hydropower Station dam. Yun Nan Power, 2011, 27(3):133-134.
[2] 陈进, 王光纶, 段云岭等. 重力坝深(底)孔断面钢筋混凝土模型试验研究[J]. 水利学报, 1999, 0(8):1-5. CHEN Jin, WANG Guang-lun, DUAN Yun-ling et al. Model study on reinforced concrete orifice of high dam[J].Shui Li XueBao, 1999, 0(8):1-5.
[3] 李德玉, 涂劲, 欧阳金惠. 孔口闸墩对溪洛渡拱坝静动应力的影响研究[J]. 水利学报, 2013, 44(11). LI De-yu, TU Jin, OUYANG Jin-hui. Nonlinear seismic response analysis on Xiluodu arch dam with orifices and piers. Shui Li XueBao, 2013, 44(11).
[4] 李永池, 姚磊, 沈俊等. 空穴的绕射隔离效应和对后方应力波的削弱作用[J]. 爆炸与冲击, 2005, 25(3):193-199. LI Yong-chi, YAO Lei, SHEN Jun et al. Insulation effect of the cavity on stress wave[J]. Explosion and Shock Waves, 2005, 25(3):193-199.
[5] 张社荣, 王高辉. 混凝土重力坝抗爆性能及抗爆措施研究[J]. 水利学报, 2012, 43(10). ZHANG She-rong, WANG Gao-hui. Study on the antiknock performance and measures of concrete gravity dam[J]. Shui Li XueBao, 2012, 43(10).
[6] 李本平. 制导炸弹连续打击下混凝土重力坝的破坏效应[J]. 爆炸与冲击, 2010, 30(2):220-224. LI Ben-ping. Damage effect of a concrete gravity dam under continuous attacks of guided bombs[J]. Explosion and Shock Waves, 2010, 30(2):220-224.
[7] 张启灵, 李端有, 李波. 水下爆炸冲击作用下重力坝的损伤发展及破坏模式[J]. 爆炸与冲击, 2012, 32(6):609-615. ZHANG Qi-ling, LI Duan-you, LI Bo. Damage propagation and failure mode of gravity dam subjected to underwater explosion[J]. Explosion and Shock Waves, 2012, 32(6):609-615.
[8] 王高辉等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应[J]. 水力学报, 2015,46(2). WANG Gao-hui et al. Damage effects of concrete gravity dams subjected to underwater explosion[J]. Shui Li XueBao, 2015,46(2).
[9] Linsbauer H N. Damage potential of an upstream-side crack in a gravity dam subjected to an impact loading in
the reservoir[C]. 841-846.
[10] Linsbauer H. Hazard potential of zones of weakness in gravity dams under impact loading conditions[J].Frontiers of Architecture and Civil Engineering in China, 2011,5(1):90-97.
[11] 张社荣, 王高辉. 水下爆炸冲击荷载下混凝土重力坝的抗爆性能[J]. 爆炸与冲击, 2013(03):255-262. ZHANG She-rong, WANG Gao-hui. Antiknok performance of concrete gravity dam subjected to underwater explosion[J]. Explosion and Shock Waves, 2013(03):255-262.
[12] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式[J]. 爆炸与冲击, 2012, 32(5):501-507. ZHANG She-rong, WANG Gao-hui, WANG Chao et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion[J]. Explosion and Shock Waves, 2012, 32(5):501-507.
[13] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension[J].ACI Materials Journal,1999,96(5):614-616.
[14] Riedel W, Thoma K , Hiermaier S, et al. Penetration of reinforced concrete by BETA2B2500 numerical analysis using a new macroscopic concrete model for hyd-rocodes [C]. 9th International Symposium, Interaction of the Effects of Munitions with Structures, Berlin-Strausberg: IBMAC, 1999:315-322.
[15] Holomquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjective to large strains, high strain rates, and high pressures[C]. Jackson N, Dickert S. The 14th International Symposium on Ballistics, USA: American Defense Prepareness Association, 1993:591-600.
[16] Johnson G R. Computed radial stresses in a concrete target penetrated by a steel projectile[C].Proceedings of the 5th International Conference On Structures under Shock and Impact.Greece,1998:793-806.
[17] ZhenguoTu, Yong Lu. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J].International Journal of Impact Engineering,2009,36:132-146.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}