考虑路面附着对驾驶员转向操纵的影响,设计了电动助力转向电流补偿控制策略。为了实时估计出路面附着系数,基于无迹卡尔曼滤波理论建立了路面附着系数观测器。在传统电动助力转向控制基础上,把路面附着和车速作为输入,设计了模糊控制器,得到控制补偿叠加电流,对传统电动助力转向进行修正。在MATLAB/Simulink中的仿真分析说明无迹卡尔曼滤波观测器能实时准确估计出路面附着系数,并且所设计的电动助力转向电流补偿控制策略能综合车辆行驶时的路面附着、车速和转向盘转角等信息,由助力执行电机产生适当的助力,使驾驶员获得良好的路感,提高车辆行驶稳定性和安全性。
Abstract
Considering the impact of tire-road friction coefficient on the driver’s steering manipulation, the control strategy of current compensation for Electric Power Steering is designed. For real-time estimation of tire-road friction coefficient, the tire-road friction coefficient observer is established based on the Unscented Kalman Filter theory. Based on the control of conventional Electric Power Steering, taking the tire-road friction coefficient and vehicle speed as input designs fuzzy controller so that the control compensation superimposed current is used to correct the traditional Electric Power Steering. The simulation analysis in MATLAB/Simulink shows that the Unscented Kalman Filter observer can accurately estimate the real time tire-road friction coefficient, and the compensation control strategy of electric power steering current can integrate the information of tire-road friction coefficient, vehicle speed and steering wheel angle, etc. The appropriate power can be generated by power motor so that the driver can obtain good road feel to improve the stability and safety of vehicle.
关键词
车辆工程 /
电动助力转向 /
无迹卡尔曼滤波观测器 /
路面附着系数估计
{{custom_keyword}} /
Key words
Vehicle engineering /
Electric Power Steering /
Unscented Kalman Filter Observer /
Friction coefficient estimation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Haiyan, Zhao Hong Chen . Estimation of Vehicle Yaw Rate and Side Slip Angle Using Moving Horizon Strategy[C]. 2006 IEEE Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China.
[2] Roy McCann. Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[C]. SAE Paper 2000-01-0817, 2000.
[3] Shi Guobiao, Lin Yi, Zhang Xin, et al. Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering[C]. SAE Paper 2004-01-1107, 2004
[4]Akinobu S, Masahiko K, Hamako H, et al. An EPS Control Strategy to Reduce Steering, Vibration Associated with Disturbance from Road Wheels[C]. SAE Paper 2006-01-1178, 2006.
[5]Yoshiyuki Y ,Wataru T, Yuji M, et al. Estimation of Lateral Grip Margin Based, on Self-aligning Torque for Vehicle Dynamics Enhancement[C]. SAE Paper 2004-01-1070, 2004.
[6]Kenji N, Masahiko K, Masaya E, et al. A Vehicle State Detection Method Based on Estimated Aligning Torque Using EPS[C]. SAE Paper 2005-01-1265, 2005.
[7] Bo-Chiuan Chen, Wei-Feng Hsu and Shiuh-Jer Huang. Sliding-Mode Return Control of Electric Power Steering[C]. SAE Paper 2008-01-0499, 2008.
[8]赵林峰, 陈无畏, 秦炜华, 等.低附着路面条件的EPS控制策略[J].机械工程学报, 2011, 47(2): 109-114.
ZHAO Lin-feng, CHEN Wu-wei, QIN Wei-hua, , et al. Electric Power Steering on Low Friction Coefficient Road [J]. Journal of Mechanical Engineering, 2011, 47(2): 109-114.
[9]Lu Fan, Bing Zhou, Harry Zheng. A New Control Strategy for Electric Power Steering on Low Friction Roads[C]. SAE Paper 2014-01-0083, 2014.
[10]余志生.汽车理论[M].北京:机械工业出版社,2008.
[11]H.B.Pacejka, Tyre and Vehicle Dynamics, 2002, Butterworth-Heinemann, ISBN 0 7506 5141 5.
[12]杨财, 李亮, 宋健等.基于轮胎力观测器的路面附着系数识别算法[J]. 中国机械工程, 2009, 20(7): 873-876.
YANG Cai, LI Liang, SONG Jian, et al. Road Friction Coefficient Estimation Algorithm Based on Tire Force Observer [J]. China Mechanical Engineering, 2009, 20(7): 873-876.
[13]Lars I, Håvard F G, Tor A. J, et al. Nonlinear Observer for Vehicle Velocity with Friction and Road Bank Angle Adaptation – Validation and Comparison with an Extended Kalman Filter[C]. SAE Paper 2007-01-0808, 2007.
[14]Takuro M, Shin-ichiro J, Hikaru N, et al. Instantaneous Estimation of Road Friction based on Front TireSAT using Kalman Filter[C]. SAE Paper 2013-01-0680, 2013.
[15] Laura R. Ray. Nonlinear tire force estimation and road friction identification: Simulation and experiments [J]. Automatica, 1997,33(10): 1819-1833.
[16] Mohinder S. G, Angus P. A. Kalman Filtering Theory and Practice Using MATLAB [M]. America: John Wiley &Sons, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}