不同导风装置对超大型冷却塔风压特性影响研究

柯世堂 朱鹏

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 136-141.

PDF(3486 KB)
PDF(3486 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 136-141.
论文

不同导风装置对超大型冷却塔风压特性影响研究

  • 柯世堂    朱鹏
作者信息 +

Impact study of the different air-deflectors on the wind pressure for super-large cooling towers

  • Shitang Ke, Peng Zhu
Author information +
文章历史 +

摘要

为研究不同导风装置对超大型冷却塔风压分布特性的影响,通过风洞试验对比研究了三种有导风装置和无导风装置的大型冷却塔表面风压分布特性,其中包括平均风压、脉动风压、峰值因子、以及极值风压等气动参数,提炼出不同导风装置对大型冷却塔整体和局部风压分布的影响规律,最后给出了不同导风装置下冷却塔极值风压的拟合公式。结果表明:三种导风装置均能有效减少塔筒中部负压极值区域的平均风压,同时也能有效减少塔筒迎风面中上部脉动风压的根方差,尤其以弧形导风板效果最好;不同导风装置均可有效减小塔筒中下部迎风面和负压极值区域的风压极值,尤其以弧形导风板效果最好;考虑不同导风装置下大型冷却塔迎风面、侧风面和背风面峰值因子取值分别为3.29、3.41和3.50。

Abstract

In order to study the wind load influence of different air-deflectors on a super-large cooling tower, the wind pressure distribution characteristics of the cooling tower with four cases are studied by wind tunnel test, the characteristics of the wind pressure include the average pressure, the fluctuating wind pressure, the extreme wind pressure and the peak factor, the influence of different air-deflectors on the overall and the local wind pressure distribution of the large cooling tower is obtained, the fitting formula of extreme wind pressure of cooling tower under different wind installations is presented. The result shows that three kinds of air-deflectors can effectively reduce the average wind pressure of the extreme pressure in the middle of cooling tower, the case four is best to reduce the RMS of the wind pressure in the upper part of the cooling tower. The peak factor values of the super-large cooling tower ring are different, the wind face is 3.29, the crosswind side is 3.41, the leeward side is 3.50.

 

关键词

超大型冷却塔 / 导风装置 / 脉动风压 / 峰值因子 / 极值风压

Key words

super-large cooling tower / air-deflector / fluctuating wind pressure / peak factor / extreme wind pressures

引用本文

导出引用
柯世堂 朱鹏. 不同导风装置对超大型冷却塔风压特性影响研究[J]. 振动与冲击, 2016, 35(22): 136-141
Shitang Ke, Peng Zhu. Impact study of the different air-deflectors on the wind pressure for super-large cooling towers[J]. Journal of Vibration and Shock, 2016, 35(22): 136-141

参考文献

[1] 沈国辉, 王宁博, 楼文娟,等. 渡桥电厂冷却塔倒塌的塔型因素分析[J]. 工程力学, 2012, (8):123-128.
Shen Guohui, WANG Ningbo, Lou Wenjuan. Analysis of tower shape factor in the collapse of the Ferrybridge cooling towers[J], Engineering Mechanics, 2012,(8):123:128.
[2] 柯世堂, 侯宪安, 赵林,等. 超大型冷却塔风荷载和风振响应参数分析:自激力效应[J]. 土木工程学报, 2012, (12):45-53.
Ke Shitang, Hou Xianan, Zhao Lin, et al. Parameter analysis of wind loads and wind induced responses for super-large cooling towers: self-excited force effects[J]. China civil engineering journal, 2012, 45(12): 45-53.
[3] J. Noorzaei, Ali Naghshineh, M.R. Abdul Kadir, W.A. Thanoon. Nonlinear interactive analysis of cooling tower-foundation-soil interaction under unsymmetrical wind load[J]. Thin-Walled Sturcture. 2006,44:997-1005.
[4] 赵 林,葛耀君,许林汕等. 超大型冷却塔风致干扰效应试验研究[J]. 工程力学, 2009, 26(1): 149-154
Zhao Lin; Ge Yao-jun, Xu Linshan. Wind tunnel investigation on wind-induced interference effects for super large cooling towers[J]. Engineering Mechanics, 2009, 26(1): 149-154.
[5] Shitang Ke,Liang Jun,Lin Zhao,Yaojun Ge,Influence of ventilation rate on the aerodynamic interference for two IDCTs by CFD,Wind and Structures, An International Journal, 2015,20(3):18-37.
[6] Spalding,B., Singham,R.. Die Leistung von Kaminkuhlern[J]. Vergleich Theorie and Praxis, Cham. Technik, 1996, 18(7): 385-391.
[7] 邹云峰;牛华伟;陈政清. 超大型冷却塔单塔外表面风荷载三维效应及其设计取值[J]. 振动与冲击, 2013, 32(24): 76-82.
Zou Yun-feng Niu Hua-wei Chen Zhen-qing. Three-dimensional effect and design values of outer surface wind loading for single super-large cooling tower. Journal of vibration and shock, 2013, 32(24): 76-82.
[8] S T Ke, Y J Ge, L Zhao, Y Tamura. Wind-induced Responses Characteristics on Super-large Cooling Towers. Journal of Central South University of Technology, 2013. 20(11): 3216-3227.
[9] 艾•汉佩, 胡贤(译). 冷却塔[M]. 北京: 电力工业出版社, 1978.
E.Hanmpe, Hu Xian(translate). Cooling Tower. BeiJing: Electric Power Industial Press, 1788.
[10] 谢壮宁, 倪振华, 石碧青. 大跨度屋盖结构的等效静风荷载[J]. 建筑结构学报, 2007, 28(1):113-118.
Xie Zhuangning, Ni Zhenhua, Shi Biqing. Equivalent static wind loads on large span roof structures[J]. Journal of Building Structures,2007,27(1):113-118.
[11] 沈国辉,余关鹏,孙炳楠等. 模型表面粗糙度对冷却塔风荷载的影响[J]. 工程力学, 2011, 28(3): 86-093.
Shen Guo-hui, Yu Guan-peng, Sun Bing-nan et al. The influence of modal surface roughness on wind loads of cooling towers[J]. Engineering Mechanics, 2011, 28(3): 86-093.
[12] S T Ke, Y J Ge, L Zhao, Y Tamura. A new methodology for analysis of equivalent static wind loads on super-large cooling towers[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2012, 111(3): 30-39.
[13] DL/ 5339—2006 火力发电厂水工设计规范 [S]. 北京:中国电力出版社,2006.
DL/ 5339—2006 Code for hydraulic design of fossil fuel power plants [S]. Beijing: China electric power press, 2006.
[14] 柯世堂, 赵林, 葛耀君. 大型双曲冷却塔表面脉动风压随机特性—风压极值探讨[J]. 实验流体力学. 2010, 24(4): 7-12.
Ke Shitang, Zhao Lin, Ge Yaojun. Features of fluctuating wind pressure on large hyperbolic cooling tower: discussions on extreme wind pressure[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 7-12.

PDF(3486 KB)

597

Accesses

0

Citation

Detail

段落导航
相关文章

/