为研究TC4钛合金的动态力学性能及本构模型,利用电子万能试验机、高速液压伺服试验机和分离式Hopkinson压杆(SHPB)装置,对其进行常温下准静态、中应变率和高应变率动态力学性能试验,得到不同应变率下的应力应变曲线,拟合得到Johnson-Cook 本构模型,并分析材料中应变率力学特性对本构模型参量的影响。结果表明:TC4钛合金在应变率10-4~103s-1范围内具有明显的应变率强化效应和一定的应变硬化效应,且应变率强化效应随应变的增大而减小,应变硬化效应随应变率的增大而减小;考虑材料中应变率力学特性可提高本构模型参量的准确性;通过数值方法和试验方法研究TC4钛合金平板撞击和高速拉伸过程的动态响应,两者结果具有很好的一致性,证明本文所得本构模型的准确性。
Abstract
In order to study the dynamic mechanical property and constitutive model of TC4 titanium alloy , dynamic experiments for TC4 titanium alloy under quasi-static,intermediate strain rate and high strain rate were performed by using an electronic universal testing machine, a high velocity hydraulic servo-testing machine and a split Hopkinson press bar ( SHPB) at room temperature. The stress-strain curves under different strain rates were obtained, and a Johnson-Cook constitutive model was fitted. The dynamic mechanical property under intermediate strain rate and the effect to the constitutive model were analyzed. The experimental results show that the strain rate hardening effect and strain hardening effect of TC4 titanium alloy is obvious between 10-4~10-3s-1, the strain rate hardening effect decreases with increase in strain, and the strain hardening effect decreases with increase in strain rate. Moreover, the mechanical property under intermediate strain rate can improve the veracity of the rate sensitive parameters. Good agreement is obtained between experimental results and numerical predictions of the high speed tensile and ball impact process, which validates the accuracy of Johnson-Cook constitutive model.
关键词
TC4钛合金 /
中应变率 /
应变率效应 /
Johnson-Cook本构模型 /
平板撞击 /
数值仿真。
{{custom_keyword}} /
Key words
TC4 titanium alloy /
intermediate strain rate /
strain rate effect /
Johnson-Cook constitutive model /
plate impact /
numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄旭,朱知寿,王红红。先进航空钛合金材料与应用[M]。北京:国防工业出版社,2012。
Huang Xu , Zhu ZhiShou, Wang HongHong. Advanced Aeronautical Titanium Alloys and Applications [M]. Bei Jing: National Defense Industry Press, 2012.
[2] 陈刚,陈忠富,陶俊林等。TC4动态力学性能研究[J],实验力学,2005,20(4):605-609。
CHEN Gang,CHEN ZhongFu,TAO JunLin,et al.Study on plastic constitutive relationship parameters of TC4 titanium[J].Journal of Experimental Mechanics,2005,20 ( 4 ) : 605-609
[3] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. In: Proceedings of the 7th International Symposium on Ballistics, The Hague ,Netherlands, 1983:541-547.
[4] 陈敏。TC4钛合金力学性能测试及动态材料模型研究[D]。南京:南京航空航天大学,2012。
Chen Min. Study of the mechanical property test and dynamic constitutive model of TC4 titanium alloy [D]. Nan Jing:Nanjing University of Aeronautics and Astronautics, 2012.
[5] Woei-Shyan Lee and Chi-Feng Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures[J], Materials Science and Engineering,A241 (1998) 48–59.
[6]Don Lesuer. Experimental Investigations of Material Models for Ti-6AL4V and 2024-T3[R], FAA Report DOT/FAA/AR-00/25, September 2000.
[7]林莉,支旭东,范锋,等.Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击,2014,33(9):153-158.
LIN Li, ZHI Xu-dong, FAN Feng, et al. Determination of parameters of Johnson-Cook models of Q235B steel[J].Journal of Vibration and Shock,2014,33(9):153-158.
[8] H.HUH, J.H.LIM and S.H.PARK. HIGH SPEED TENSILE TEST OF STEEL SHEELS FOR THE STRESS-STRAIN CURVE AT THE INTERMEDIATE STRAIN RATE [J], International Journal of Automotive Technology, Vol.10, No.2, pp.195-204(2009).
[9] Hoon Huh a , Kwanghyun Ahn , Ji Ho Lim, etc. Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates[J]. Journal of Materials Processing Technology 214 (2014) 1326–1340.
[10]谢灿军,童明波,刘富,等.7075-T6铝合金动态力学试验及本构模型研究[J].振动与冲击,2014 ,33(18):110-114.
XIE Can-jun,TONG Ming-bo,LIU Fu,et al.Dynamic tests and constitutive model for 7075-T6 aluminum alloy[J].Journal of Vibration and Shock,2014 ,33(18):110-114.
[11] Ravi Shriram Yatnalkar. Experimental Investigation of Plastic Deformation of Ti-6Al-4V under Various Loading Conditions [D]. The Ohio State :The Ohio State University, 2010.
[12] P.K.C.Wood, C.A.Schley, S.Kenny, T.Dutton. Validating Performance of Automotive Materials at High Strain Rate for Improved Crash Design[C]. 9th International LS-DYNA Users Conference, Detroit, 2006 .
[13]余同希,邱信明。冲击动力学[M].北京:清华大学出版社,2011。
Yu TongXi, Qiu XinMing. Impact Dynamics [M]. Bei Jing Tsinghua University Press, 2011.
[14]Khan AS, Suh YS, Kazmi R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys [J]. Int J Plast. 2004, 20(12):2233–2248.
[15] Nemat-Nasser S, Guo WG, Nesterenko VF, Indrakanti SS, Gu YB. Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling[J]. Mech Mater. 2001, 33(8):425–439.
[16] Seo SW, Min OK, Yang HM. Constitutive equation for Ti-6Al-4Vat high temperatures measured using the SHPB technique [J]. Int J Impact Eng. 2005, 31(6):735–754.
[17] Gregory Kay. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model: DOT /FAA/AR-03 /57 [R]. Washington,D. C: National Technical Information Service,2003: 1-11.
[18]钱伟长。穿甲力学[M]。北京:国防工业出版社,1984。
Qian WeiChang. Penetrate Mechanics [M]. Bei Jing:National Defense Industry Press, 1984.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}