特种起重机伸缩臂振动特性建模分析与试验

杜文正,张金星,姚晓光,谢 政,马长林

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 169-175.

PDF(2471 KB)
PDF(2471 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 169-175.
论文

特种起重机伸缩臂振动特性建模分析与试验

  • 杜文正,张金星,姚晓光,谢  政,马长林
作者信息 +

Mathematic Vibration Model and Experiment of Special Telescopic Boom Crane

  • DU Wen-zheng, ZHANG Jin-xing, YAO Xiao-guang, XIE Zheng, MA Chang-lin
Author information +
文章历史 +

摘要

为研究某新型特种起重机作业过程中伸缩臂带载伸展时的振动特性,将伸缩臂等效为固定支撑的阶梯式变截面悬臂梁和进行伸展运动的变长度悬臂梁。基于梁振动的微分方程与模态叠加理论建立了伸缩臂带载伸展时臂架振动的数学模型。采用Rayleigh-Ritz法,结合梁的边界条件得到了各级臂振动的固有频率和在等效冲击载荷作用下臂端的坐标响应,进而得到振动位移曲线。对理论结果分析可知,伸缩臂的自身臂架结构和伸展速度是影响臂节振动的主要因素,臂节刚度越小、伸展速度越快,臂架振动位移越大。依托改装后的HIAB-033T型起重臂为试验平台进行试验研究,试验结果与理论结果基本一致,验证了理论分析的正确性。

Abstract

To research on the vibration of the special telescopic boom crane stretching with payload,the telescopic boom was equivalent to a fixed cantilevered beam with multiple steps and a stretching beam with varying length. Based on the equation of the beam’s vibration and the theory of modal superposition, the mathematic vibration model of the special telescopic boom crane was established. Using the Rayleigh-Ritz method, the natural frequency of the transverse vibration was calculated according to the boundary conditions, the response of the generalized coordinates of each joint arm was derived, and the deformations curves was then obtained. The analysis of the theoretical results show that the stiffness of the beam and the stretching speed is the main factors influencing the vibration of the beam, the smaller of the stiffness and the faster of the speed, the larger of the deformations. The experiment was done through the remoulding of the HIAB-033T boom, and the experiment results was consistent with the theoretical results, which verified the correctness of the mathematic vibration.

关键词

起重机伸缩臂  / 振动特性  / 数学模型  / 试验

Key words

Telescopic cranes boom  / Transverse vibration  / Mathematical model  / Experiment

引用本文

导出引用
杜文正,张金星,姚晓光,谢 政,马长林. 特种起重机伸缩臂振动特性建模分析与试验[J]. 振动与冲击, 2016, 35(22): 169-175
DU Wen-zheng, ZHANG Jin-xing, YAO Xiao-guang, XIE Zheng, MA Chang-lin. Mathematic Vibration Model and Experiment of Special Telescopic Boom Crane[J]. Journal of Vibration and Shock, 2016, 35(22): 169-175

参考文献

1 纪爱敏,张培强,彭铎,罗衍领. 起重机伸缩吊臂局部稳定性的有限元分析[J]. 农业机械学报, 2004, 35(6): 48-51.
JiAimin, Zhang Peiqiang, Peng Duo, LuoYanling. Finite Element Analysis For Local Stability of Telescopic Boom of Truck Crane[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(6): 48-51. (in Chinese)
2 徐圣, 刘锦阳, 余征跃. 几何非线性空间梁的动力学建模与实验研究[J]. 振动与冲击, 2014, 33(21): 108-113.
Xu Sheng, Liu Jinyang, Yu Zhengyue. Dynamic Modeling and Tests for a Geometric Nonlinear Spatial Beam[J]. Journal of Vibration and Shock, 2014, 33(21): 108-113. (in Chinese)
3 Liang DU, Nianli LU, Peng LAN. Analysis of Flexibility and stability of Crane Telescopic Boom with Elastic Restraint and Secon-Order Effect[J]. Advanced Materials Research, 2013, 109-113.
4 陈红永, 陈海波, 张培强. 轴向受压运动梁横向振动特性的数值分析[J]. 振动与冲击, 2014, 33(24): 101-105.
Chen Hongyong, Chen Haibo, Zhang Peiqiang. Numerical analysis of free vibration of an axially moving beam under compressive load[J]. Journal of Vibration and Shock, 2014, 33(24): 101-105. (in Chinese)
5 ArkadiuszTrabka. Dynamics of telescopic cranes with flexible structural components[J]. International Journal of Mechanical Sciences, 2014, 88: 162-174.
6 王斌锐,方水光,金英连. 综合关节和杆件柔性的机械臂刚柔耦合建模与仿真[J]. 农业机械学报, 2012, 43(2): 211-216.
Wang Binrui, Fang Shuiguang, Jin Yinglian. Dynamics and Simulation of Rigid-flexible Coupling Robot Arm with Flexible Joint and Link[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(2): 211-216.
7 张泉,周丽平,金家楣,张建辉. 高速柔性并联平台的动力学分析[J], 振动工程学报, 2015, 28(1): 27-37.
Zhang Quan, Zhou Liping, Jin Jiamei, Zhang Jianhui. Dynamic analysis of a high speed flexible parallel manipulator[J]. Journal of Vibration Engineering, 2015, 28(1): 27-37. (in Chinese)
8 梁捷, 陈力. 柔性空间机械臂末端运动及柔性振动的模糊自适应补偿控制[J]. 兵工学报, 2011, 32(1): 45-57.
Liang Jie, Chen Li. Fuzzy logic adaptive compensation control of end-effect movtion and flexible vibration for spaced-based flexible manipulator[J]. Acta Armamentarii, 2011, 32(1): 45-57. (in Chinese)
9 刘锦阳,洪嘉振. 柔性梁的刚柔耦合动力学特性研究[J]. 振动工程学报, 2002, 15(2): 194-198.
Liu Jinyang, Hong Jiazhen. Study on rigid-flexible coupling dynamic behavior of flexible beam[J]. Journal of Vibration Engineering, 2002, 15(2): 194-198. (in Chinese)
10 韩旭炤,黄玉美,张永贵,蔡晓江. 梁结构振动问题的边界元法解析[J]. 农业机械学报, 2008, 39(7): 178-182.
Han Xuzhao, Huang Yumei, Zhang Yonggui, Cai Xiaojiang. Analysis of beam structure vibration by boundary element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 178-182. (in Chinese)
11 DawidCekus, BogdanPosiadala. Vibration Model and Analysis of Three-member Telescopic Boom With Hydraulic Cylinder for Its Radius Change[J]. Journal of Bifurcation and Chaos, 2011,21(10):2883-2892.
12 Ioannis G. Raftoyiannis, George. Michaltsos. Dynamic Behavior of Telescopic Cranes Boom[J]. Structural Stability and Dynamics, 2013, 13(01): 1-13.
13 J.W.Jaworski, E.H. Dowell. Free vibration of a cantilevered beam with multiple steps: Comprason of several theoretical methods with experiment[J]. Journal of Sound and Vibration, 2008(312): 713-725.
14 姚倡仁,唐国梁. 火箭导弹发射动力学[M]. 北京:北京工业学院出版社, 1987: 308-317.
Yao Changren, Tang Guoliang. Lanuching system dynamics for rockets or missile[M]. Beijing: Beijing industrial institute publishing house, 1987: 308-317.
15 黄日龙,田常录,谢家学. 擦窗机伸缩臂的振动响应分析[J]. 江南大学学报, 2014, 13(2): 184-188.
Huang Rilong, Tian Changlu, Xie Jiaxue. Vibration response analysis of Gondola telescopic boom[J]. Journal of Jiangnan University, 2014, 13(2): 184-188.(in Chinese)
16 R.克拉夫, J.彭津. 结构动力学[M]. 北京:高等教育出版社, 2013: 299-301.
Ray Clough, Joseph Penzien. Dynamics of Structures. Beijing: Heigher Education Press, 2013: 299-301.
17 GuohuiDuan, Xinwei Wang. Free vibration analysis of multiple-stepped beams by the discrete singular convolution[J]. Applied Mathematics and Compution, 2013, 219: 11096-11109.

PDF(2471 KB)

667

Accesses

0

Citation

Detail

段落导航
相关文章

/