共轭梯度最小二乘迭代正则化算法在冲击载荷识别中的应用

卢立勤1,2,乔百杰1, 张兴武1, 陈雪峰1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 176-182.

PDF(1631 KB)
PDF(1631 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 176-182.
论文

共轭梯度最小二乘迭代正则化算法在冲击载荷识别中的应用

  • 卢立勤1,2,乔百杰1, 张兴武1, 陈雪峰1
作者信息 +

The application of conjugate gradient least squares iteration regularization algorithm in impact load identification

  • LU Li-qin1,2, QIAO Bai-jie1, ZHANG Xing-wu1, CHEN Xue-feng1
Author information +
文章历史 +

摘要

结构动载荷识别反问题是典型的病态问题,需要应用正则方法克服其病态特性而获得稳定的解。与直接正则化算法Tikhonov方法相比,共轭梯度最小二乘 (Conjugate Gradient Least Squares, CGLS) 迭代算法在载荷识别反问题的正则化过程有无须对传递矩阵求逆、无须明确正则化参数的优点。本文提出共轭梯度最小二乘迭代正则化算法和启发式迭代收敛终止准则,用于三自由度仿真模型和壳结构试验模型的冲击载荷识别,并与经典的Landweber迭代正则化算法和直接正则化算法Tikhonov方法比较。仿真和实验结果表明:CGLS迭代正则化算法在识别精度、收敛速度、计算效率和抗噪性方面有明显优势。

Abstract

Regularization methods should be developed to overcome the ill-posedness of inverse problem of structural dynamic load identification for a stable solution. The conjugate gradient least squares (CGLS) iterative regularization algorithm has several advantages over direct regularization methods such as Tikhonov method on solving inverse problem: the inversion of matrix is not required; no explicit regularization parameter is required. In this paper, the CGLS iteration regularization algorithm with the heuristic stopping rule is proposed to reconstruct the impact load acting on the three-degrees-of-freedom system and the shell structure, compared to the classical Landweber iteration regularization algorithms and Tikhonov regularization method. Simulation and experiment demonstrates that the CGLS algorithm for impact load identification works better in accuracy, convergence rate, cost time and anti-noise.
 
 

关键词

共轭梯度最小二乘算法 / Landweber算法 / 冲击载荷识别 / 正则化

Key words

conjugate gradient least squares algorithm / Landweber algorithm / impact load identification / regularization method

引用本文

导出引用
卢立勤1,2,乔百杰1, 张兴武1, 陈雪峰1. 共轭梯度最小二乘迭代正则化算法在冲击载荷识别中的应用[J]. 振动与冲击, 2016, 35(22): 176-182
LU Li-qin1,2, QIAO Bai-jie1, ZHANG Xing-wu1, CHEN Xue-feng1. The application of conjugate gradient least squares iteration regularization algorithm in impact load identification[J]. Journal of Vibration and Shock, 2016, 35(22): 176-182

参考文献

[1] 乔百杰, 赵彤, 陈雪峰. 功率流测量以及振动能量参数估计试验研究 [J].振动与冲击,2014, 33(7):194-197.
QIAO Bai-jie, ZHAO Tong, CHEN Xue-feng. Tests for power flow measurement and vibrational energy estimation [J]. Journal of Vibration and Shock, 2014, 33(7):194-197.
[2] Qiao, B. J., Zhao, T., Chen, X. F., et al. The assessment of active vibration isolation performance of rotating machinery using power flow and vibrational energy: experimental investigation [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, DOI: 10.1177/0954406215572434.
[3] 郝扣安, 王振清, 周利民. 不同铺层厚度复合材料的低速冲击特性与损伤模式研究 [J]. 应用数学和力学, 2013, 34(7):661-671.
HAO Kou-an, WANG Zhen-qing, ZHOU Li-min. Impact behaviors and damage modes of composites under low-velocity impact with different layup thicknesses [J], Applied Mathematics and Mechanics, 2013, 34(7): 661-671.
[4] 张磊, 曹跃云, 杨自春, 等. 总体最小二乘正则化算法的载荷识别 [J].振动与冲击,2014, 33(9):159-164.
ZHANG Lei, CAO Yue-yun, YANG Zi-chun, et al. Load identification using CG-TLS regularization algorithm [J]. Journal of Vibration and Shock, 2014, 33(9):159-164.
[5] Li Z, Feng Z P, Chu F L. A load identification method based on wavelet multi-resolution analysis [J]. Journal of Sound and Vibration, 2014, 333(2):381-391.
[6] Qiao B J, Zhang X W, Luo X J, et al. A force identification method using cubic B-spline scaling functions [J]. Journal of Sound and Vibration, 2015, 333: 28-44.
[7] Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems [M]. Academic Press, 2013.
[8] Ghajari M, Sharif Khodaei Z, Aliabadi M. Impact detection using artificial neural networks [J]. Key Engineering Materials, 2012, 488: 767-770.
[9] Qiao B J, Chen X F, Xue X F, et al. The application of cubic B-spline collocation method in impact force identification [J], Mechanical Systems and Signal Processing, 2015, 64-65: 413-427.
[10] 王林军. 正则化方法及其在动态载荷识别中的应用 [D]. 博士论文. 长沙:湖南大学, 2011.
WANG Lin-jun. Regularization methods and their applications in Dynamic Load Identification [D], Doctoral dissertation. Chang Sha: Hunan University, 2011.
[11] 常晓通, 闫云聚, 刘鎏. Landweber 迭代正则化方法在动态载荷识别中的应用 [J]. 应用数学和力学, 2013, 34(9): 948-955
CHANG Xiao-tong, YAN Yun-ju, LIU Liu. Applications of Landweber iteration regularization method in dynamic load identification [J], Applied Mathematics and Mechanics, 2013, 34(9): 948-955.
[12] Hanke M. Conjugate gradient type methods for ill-posed problems [M]. CRC Press, 1995.
[13] Rubk T, Meaney P M, Meincke P, et al. Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton's method and the CGLS inversion algorithm [J]. Antennas and Propagation, IEEE Transactions on, 2007, 55(8): 2320-2331.
[14] Huang C H, Wang S P. A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method [J]. International Journal of Heat and Mass Transfer, 1999, 42(18): 3387-3403.
[15] Kaltenbacher B, Neubauer A, Scherzer O. Iteration regularization methods for nonlinear ill-posed problems [M]. Walter de Gruyter, 2008.
[16] Qiao B, Chen X, Luo X, et al. A novel method for force identification based on the discrete cosine transform [J]. ASME Journal of Vibration and Acoustics, 2015, 137: 051012.
 

PDF(1631 KB)

Accesses

Citation

Detail

段落导航
相关文章

/