基于ESO法的九宫板阻尼结构的优化设计方法

刘双燕, 李玉龙, 邓琼, 徐一航

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 197-203.

PDF(2289 KB)
PDF(2289 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 197-203.
论文

基于ESO法的九宫板阻尼结构的优化设计方法

  • 刘双燕, 李玉龙, 邓琼, 徐一航
作者信息 +

Study on topological optimization design of 3*3 grid stiffened panel with additional damping layers based on evolutionary structural optimization

  • LIU Shuang-yan, LI Yu-long, DENG Qiong, XU Yi-hang
Author information +
文章历史 +

摘要

本文利用渐进结构拓扑优化方法(Evolution Structural Optimization,简称ESO), 以约束阻尼层质量为约束条件,以最大模态损耗因子为目标函数,编制了ESO法的可执行程序,并基于ABAQUS软件建模,开展了九宫板约束阻尼层的拓扑优化研究。发现随着约束阻尼层的删除率增大,结构模态损耗因子逐渐增至最大值后降低。而随着删除率的增大,结构单位质量阻尼性能逐渐增大,可见优化布局可以提高九宫板结构的抑振性能。为研究优化布局对结构应力分布的影响,模拟了多种振动工况下,优化前后九宫板结构的Mises应力分布云图及其最大应力,结果发现优化布局后九宫板结构Mises应力分布影响很小,且最大Mises应力值得到有效降低。并将该方法应用在一般复杂结构的优化设计,实现了较少阻尼性能损失达到减重的目的,具有重要的工程实用性。

Abstract

Topological optimization design for 3*3 grid stiffened panel was conducted using Evolutionary Structural Optimization method (ESO) with the amount of constrained damping layers as the constraint condition, and the maximization of loss factor of modality as the target function. The optimization was completed using a self-coded C program based on ESO method, which can call ABAQUS software to model the structure. The results showed that the modal damping loss factor of compound 3*3 grid stiffened panel remains unchanged firstly, , then it gradually decrease after increasing to the maximum value.The normalization first modal loss factor of the 3*3 grid stiffened panel with additional damping layers become bigger and bigger when the removal ratio increases, showing that the additional damping layers in the middle portion of the 3*3 grid stiffened panel contributes much to the suppressing vibration performance the structure. Mises stress distributed contour and the Maximum Mises stress value of this structure with 0% ,50%,100% volume amount of constrained damping layer are compared in order to study optimal layout impact on the 3*3 grid stiffened panel in resonance conditions. The results show that the optimal layout with 50% volume amount of constrained damping layer has little effect on the Mises stress distribution but the maximum Mises stress value decreases obviously. The method are used in optimization design of genergy complex structure to reach the aims of sacrificing little damping value with less mass, which can be widely used in optimization design of general damping structures, and has strong practicability.

关键词

拓扑优化 / 灵敏度分析 / 约束阻尼结构

Key words

Topological optimization / Sensitivity analysis / Constraint damping structure

引用本文

导出引用
刘双燕, 李玉龙, 邓琼, 徐一航. 基于ESO法的九宫板阻尼结构的优化设计方法[J]. 振动与冲击, 2016, 35(22): 197-203
LIU Shuang-yan, LI Yu-long, DENG Qiong, XU Yi-hang. Study on topological optimization design of 3*3 grid stiffened panel with additional damping layers based on evolutionary structural optimization[J]. Journal of Vibration and Shock, 2016, 35(22): 197-203

参考文献

[1] 姚起杭, 姚军. 工程结构的振动疲劳问题[J].应用力学学报,2006,23(1):12-15.
Yao Qi-hang, Yao Jun. Vibration Fatigue in Engineering Structures [J],Chinese Journal of Applied Mechanics, 2006,23 (1):12-15.
[2] Jean-Marie Berthelot, Mustapha Assarar, Youssef Sefrani, etc. Damping analysis of composite materials and structures [J]. Composite Structures,2008, 85: 189–204
[3] Xie YM, Steven GP. Evolutionary structural optimization [M]. Berlin, Heidelberg, New York: Springer, 1997.
[4] 郭中泽, 陈裕泽, 邓克文, 等. 基于ESO的约束阻尼板拓扑优化设计研究[ J] . 机械设计, 2006, 23( 10) : 3- 5.
GUO Zhong-ze, CHEN Yu-ze, DENG Ke-wen, et al. Study on Topological Optimization Design of Constrained Damping Plate based on Evolutionary Structural Optimization [J]. Journal of Machine Design,2006, 23(10): 3- 5.
[5] 郭中泽, 陈裕泽, 侯强, 等. 阻尼材料布局优化研究[ J] . 兵工学报, 2007, 28( 5) : 638- 640.
GUO Zhong-ze, CHEN Yu-ze, HOU Qiang, et al. Damping material optimal placement in damping structure design [J] .ActaArmamentarii, 2007, 28( 5) :638- 640.
[6] 茅志颖,陈国平,张保强.利用拓扑优化的结构微小损伤定位研究[J].振动与冲击,2012,31(4):25-29.
MAO Zhi-ying, CHEN Guo-ping, ZHANG Bao-qiang.Tiny damage localization using topology optimization [J].Journal of Vibration and Shock,2012,31(4):25-29.
[7] 李超,李以农,施磊,等. 圆柱壳体阻尼材料布局拓扑优化研究[J].振动与冲击,2012,31(4):48-52.
LI Chao,LI Yi-nong,SHI Lei, et al. Topological Optimization for Placement of Damping Material on Cylindrical Shells [J]. Journal of Vibration and Shock, 2012, 31(4):48-52.
[8] 柳承峰,李以农,郑玲.约束层阻尼短圆柱壳拓扑优化分析及实验研究[J].振动与冲击,2013,32(18):49-53+58.
LIU Cheng-feng, LI Yi-nong, ZHENG Ling. Topology Optimization and Tests for a Short Cylindrical Shell with Constrained Layer Damping[J]. Journal of Vibration and Shock, 2013,32(18):49-53+58.
[9] 郑玲,谢熔炉,王宜,等.基于优化准则的约束阻尼材料优化配置[J].振动与冲击,2014,29(11):156-159
ZHENG Ling, XIE Rong-lu, WANG Yi, et al. Optimal Placement of Constrained Damping Material in Structures based on Optimality Criteria[J]. Journal of Vibration and Shock,2014, 29(11): 156-159.
[10] Sigmund O. Numerical in stabilities in topology optimization: a survey on procedures dealing with checkerboard, mesh dependencies, local minima[J] . Structural Optimization, 1998, 16(1):68- 75.

PDF(2289 KB)

858

Accesses

0

Citation

Detail

段落导航
相关文章

/