文中利用统计能量分析方法,首先建立了计算汽车前围板传递损失的统计能量分析模型,采用最优拉丁超立方方法生成了36个声学包方案的试验点,其中以覆盖率、堵件厚度、PU泡沫厚度及EVA面密度为设计变量和以前围子系统隔声量和声学包重量为优化目标,并计算了不同声学包方案下前围子系统的传递损失。然后依此建立Kriging近似模型并验证模型的可信度,采用NSGA-II算法进行以声学包隔声量及重量为目标的多目标优化,获得了Pareto最优解集。赋予声学包隔声性能及总重量一样的权重,得到了覆盖率、堵件厚度、PU泡沫厚度及EVA面密度的最优值,并任取三组试验点计算其传递损失和整车中的基于能量的隔声量和驾驶员头部的声压级,从而验证该结果的正确性。结果表明,该最优值能够使得声学包在隔声性能与重量之间取得最佳平衡。
Abstract
In the paper, by using statistical energy analysis (SEA) method, the vehicle dash SEA model to calculate the transmission loss (TL) is firstly established. By using the optimal latin hypercube method, 36 test points of the dash sound package are generated, which are based on four design variables in terms of coverage, blocking thickness of the holes, PU foam thickness and EVA surface density and two optimization targets in terms of the insulation performance and the weight of the sound package. And the TLs of different sound package cases are calculated. Then the kriging approximation model can be built and also verified. The multi-objective optimizations of the insulation performance and the weight of sound package are performed by NSGA-II algorithm, then pareto optimal solution set is obtained. The optimal values of coverage,blocking thickness, PU foam thickness and EVA surface density are obtained by giving the same weight of the insulation performance and the sound package weight, and the result is also verified based on the TL and full vehicle results in terms of power based noise reduction (PBNR) and sound pressure level (SPL) at the driver’s head by three random test points. The result shows that the best balance between the insulation performance and the weight for the dash sound package can be acquired by the optimal values.
关键词
声学包优化 /
最优拉丁超立方 /
Kriging模型 /
NSGA-II算法
{{custom_keyword}} /
Key words
Sound package optimization /
optimal latin hypercube /
kriging model /
NSGA-II algorithm
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 卢兆刚. 基于混合FE-SEA方法的汽车薄壁件中频声学特性预测及优化研究[D].浙江大学,2011.
LU Zhaogang. The prediction and Optimization of the “Mid-frequency” Acoustic Problems on the Automobile Thin-wall Components Based on the Hydride FE-SEA Method [D].Zhejiang: Zhejiang University, 2011.
[2] 于学华,张家栋. 汽车车内噪声产生机理及控制技术[J].噪声与振动控制,2008, 5(10):14-20.
YU Xue-hua, ZHANG Jia-dong. Mechanism of Inner Noise Generation of Automobiles and the Methods of Control[J]. Noise and Vibration Control, 2008, 5(10):14-20.
[3] 张冬冬,郭勤涛. Kriging响应面代理模型在有限元模型确认中的应用[J].振动与冲击,2013,32(9):190-190.
ZHANG Dong-dong, GUO Qin-tao. Application of Kriging response surface in finite element model validation [J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(9):190-190.
[4] 容江磊,谷正气,等. .基于Kriging模型的跑车尾翼断面形状的气动优化[J]. 中国机械工程,2010,22(2):243-246.
RONG Jiang-lei,GU Zheng-qi. Aerodynamic optimization of the cross section shape for a sports car rear wing based on Kriging surrogate model [J]. China Mechanical Engineering, 2010, 22(2):243-246.
[5] 杨晓涛,谷正气,杨振东等. 汽车乘员舱多层吸声材料的多目标优化[J].振动与冲击,2013,32(4):24-25.
YANG Xiao-tao, GU Zheng-qi, YANG Zhen-dong, et al. Multi-target optimization of multilayer sound absorption material combinations in passenger compartment of a car [J]. JOURNAL OF VIBRATION AND SHOCK, 2013, 32(4):24-25.
[6] Engineous Software ISIGHT 9.0 Reference Guide [M].Engineous Software Inc.2004.
[7] 高云凯,孙芳,余海燕. 基于Kriging模型的车身耐撞性优化设计[J].汽车工程,2010,31(1):19-20.
Gao Yunkai, Sun Fang, Yu Haiyan. Crashworthiness Optimization of Car Body Based on Kriging Surrogate Model [J]. Automotive Engineering, 2010,31(1):19-20.
[8] 陈则尧,吴宪,丁巨岳. 基于响应面法的汽车前防撞梁轻量化分析[J].计算机辅助工程,2014,23(3):18-18.
CHEN Zeyao, WU Xian, DING Juyue. Lightweight analysis of front bumper beam based on response surface method [J]. Computer Aided Engineering, 2014, 23(3):18-18.
[9] 陈国栋. 基于代理模型的多目标优化方法及其在车身设计中的应用[D].湖南:湖南大学,2012.
CHEN Guodong. Multi-objective optimization method based on metamodel and its applications in vehicle body design [D]. Hunan: Hunan University, 2012.
[10] 徐磊. 基于遗传算法的多目标优化问题的研究与应用[D].湖南:中南大学,2007.
XU Lei. Multi-objective optimization research and apply based on genetic algorithm [D]. Hunan: Central South University.
[11] 段绪伟,李以农,郑玲等. 基于NSGA-II遗传算法的磁流变悬置多目标优化[J].振动与冲击,2014,33(3):194.
DUAN Xu-wei, LI Yi-nong, ZHENG Ling,et al. Multi-objective optimization for a MR engine mount based on NSGA-II algorithm [J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(3):194.
[12] SHAO Jianwang, WU Xian, WEI Na, et al. Optimal design of vehicle dash and floor sound package based on statistical energy analysis. SAE Technical Paper 2015-01-0661, 2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}