为提高叶栅摆动装置模态分析与模态试验的相关性,使用响应面方法对有限元模型多个参数进行优化,实现模型修正。首先使用有限元模型进行模态分析,提取整体模态;其次,采用移动传感器方法对大型装配体进行整体模态试验,通过模态判据准则检验模态试验结果、模态参与因子确定主要整体模态;再次,基于有限元模型误差分析,确定对主要部件分别采用不同材料修正参数,通过中心复合试验设计确定样本空间,使用多目标响应面方法对样本进行回归分析,在回归分析的响应面内对待修正参数进行非线性约束优化,得到最优解;最后,使用修正参数重新进行模态分析实现模型确认,并进行动力学计算,与实际测试结果对比。结果表明,修正后的模态分析与模态试验结果相关性提高,前三阶整体模态频率误差均值由9.71%减小至0.73%,振型相关性由0.74提升至0.89。
Abstract
In order to improve the correlation of modal analysis and modal test for the blade swing mechanism, multiple parameters optimization was brought into finite element model in response surface method. First, the overall modal parameters of the structure were extracted by modal analysis. Second, as to this large assembly, modal test was developed by moving sensor not hammer. The methods of validating test result and confirming main modes were mode assurance criterion and mode participation factor, respectively. Again, based on finite element model error analysis, the principle of this model updating was intended to be different parts with different materials. The sample space determined by central composite test design was calculated in regression analysis by use of multiple objective response surface method, in which the mode updating targets were optimized. Finally, using the modified parameters in a new modal analysis validated mode updating accuracy, while developing dynamic simulation compared with the actual test results. The results show that correlation of modal test and updated modal analysis were improved, the average frequency error of the first three modes was reduced from 9.71% to 0.73%, and modal shape MAC was improved from 0.74 to 0.89.
关键词
模型修正 /
响应面方法 /
模态试验 /
模态分析 /
叶栅摆动装置
{{custom_keyword}} /
Key words
model updating /
response surface method /
modal test /
modal analysis /
blade swing mechanism
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 费庆国, 张令弥, 李爱群, et al. 基于统计分析技术的有限元模型修正研究[J]. 振动与冲击, 2005, 24(3): 23-26.
Fei Qing-guo, Zhang Ling-mi, Li Ai-qun, et al. Finite element model updating using statistics analysis [J]. Journal of vibration and shock, 2005, 24(3): 23-26.
[2] 李佰灵, 荣克林. 基于响应面方法的多目标有限元模型修正技术研究[J]. 强度与环境, 2010, 37(4): 13-21.
Li Bail-ing Rong Ke-lin. Study of finite element model updating for multi-objective based on the response surface method [J]. Structure & environment engineering, 2010, 37(4): 13-21.
[3] 朱宏平, 徐斌, 黄玉盈. 结构动力模型修正方法的比较研究及评估[J]. 力学进展, 2002, 32(4): 513-524.
Zhu Hong-Ping, Xu Bin, Huang Yu-ying. Comparison and evaluation of analytical approaches to structural dynamic model correction [J]. Advances in mechanics. 2002, 32(4): 513-524.
[4] 李万德. 基于响应面的自锚式悬索桥有限元模型修正[D]. 东北林业大学, 2013.
[5] 苏忠亭, 徐达, 杨明华. 基于模态试验的某火炮身管有限元模型修正[J]. 振动与冲击, 2012, 31(24): 54-59.
Su Zhong-ting, Xu Da, Yang Ming-hua. Finite-element model updating for a gun barrel based on modal test [J]. Journal of vibration and shock, 2012, 31(24): 54-59.
[6] 苏忠亭, 徐达, 李晓伟. 步兵战车车体结构有限元模型修正[J]. 振动.测试与诊断. 2014, 34(6): 1148-1153.
Su Zhong-ting, Xu Da, LiXiaoxvei. Finite-Element model updating for infantry combat vehicle car-body [J]. Journal of vibration, measurement & Diagnosis. 2014, 34(6): 1148-1153.
[7] 况志强. 基于模态试验及模型修正技术的龙洗研究[D]. 北京邮电大学, 2011.
[8] 李晓东, 刘凡, 刘继军. 复杂框架结构模态试验准备及设计技术[J]. 强度与环境. 2013, 40(4): 27-30.
Li Xiao-dong, Liu Fan, Liu Jijun. Test design and preparation techniques of modal test for complicated frame structure [J]. Structure & environment engineering, 2013, 40(4): 27-30.
[9] 张喜清, 项昌乐, 刘辉. 基于预试验分析的复杂箱体结构试验模态研究[J]. 振动与冲击. 2011, 30(4): 109-112.
Zhang Xi-qing,Xiang Chang-le,Liu Hui. Modal testing study on a complicated housing structure based on pre-test analysis [J]. Journal of vibration and shock, 2011, 30(4): 109-112.
[10] 刘渊. 结构振动模态测试优化技术的研究及其应用[D]. 南京航空航天大学, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}