电流变液静压导轨系统静动态特性研究

胡均平1,刘成沛1,郭勇2,梁向京1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 24-30.

PDF(1653 KB)
PDF(1653 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 24-30.
论文

电流变液静压导轨系统静动态特性研究

  • 胡均平1,刘成沛1,郭勇2,梁向京1
作者信息 +

Static and dynamic characteristics of hydrostatic guideway system based on electrorheological fluid

  • HU Jun-ping1, LIU Cheng-pei1, Guo Yong2, Liang Xiang-jing1
Author information +
文章历史 +

摘要

研究了一种以电流变液为润滑介质的静压导轨系统静动态特性。利用液阻网络理论,在分析电场强度与电流变液粘性关系,综合考虑关联参数的基础上,建立了电流变液静压导轨系统的CFD计算数值模型。根据摄动理论,利用Fluent动网格技术,研究了在不同工作变量下电流变液静压导轨的静动态特性。研究结果表明:电场强度、负载因素与初始压力比等工作变量均会对电流变液静压导轨系统性能带来影响;电场强度增强会使系统流量减小,阻尼系数增大,但不会对系统静刚度带来影响;改变切削力载荷频率,导轨系统会出现共振现象,增强电场强度可显著提高系统动刚度,抑制共振时的最大振幅。实验结果与仿真数值一致,为电流变液静压导轨的设计应用提供了理论参考依据。

Abstract

The static and dynamic characteristics of hydrostatic guideway based on lubricating medium of electrorheological fluid are studied. Computational fluid dynamics numerical model is established based on correlation parameters using hydraulic resistance network theory and considering influence of electric field intensity versus characteristics of electrorheological fluid. The static and dynamic characteristics of hydrostatic guideway based on electrorheological fluid under different working variables are studied using Fluent dynamic mesh technology according to perturbation theory. Research results show that: Static and dynamic characteristics of hydrostatic guideway system can be influenced by electric filed intensity, load factor and initial pressure ratio; The system flow rate will decrease, damping coefficient will increase while system stiffness will remain unchanged when the electric filed intensity is enhanced under the condition that initial design parameters and load factors are unchanged; Resonance phenomenon of the guideway system will be occurred when cutting force frequency is changed. Vibration under resonance phenomenon can be suppressed and dynamic stiffness will be increased significantly by enhancing electric filed intensity. The simulation results are in agreement with the experimental results, which provide a theoretical reference for the design and application of hydrostatic guideway.

关键词

静压导轨 / 电流变液 / 电场强度 / 静动态特性 / 动网格 / 关联参数

Key words

hydrostatic guideway / electrorheological fluid / electric field intensity / static and dynamic characteristics / dynamic mesh / correlation parameters

 

引用本文

导出引用
胡均平1,刘成沛1,郭勇2,梁向京1. 电流变液静压导轨系统静动态特性研究[J]. 振动与冲击, 2016, 35(22): 24-30
HU Jun-ping1, LIU Cheng-pei1, Guo Yong2, Liang Xiang-jing1. Static and dynamic characteristics of hydrostatic guideway system based on electrorheological fluid[J]. Journal of Vibration and Shock, 2016, 35(22): 24-30

参考文献

[1] Ko Y G, Choi U S. Negative electrorheological fluids[J]. Journal of Rheology, 2013, 57(6): 1655-1667.
[2] Bouzidance A, Thomas M. An electrorheological hydrostatic journal bearing for controlling rotor vibration[J]. Computers and structures, 2008, 86: 463-472.
[3] Aoyama T, Inasaki I. Application of electro-rheological fluid dampers to machine tool elements[J]. Annals of CIRP, 1997, 46: 309-312.
[4]  叶红玲, 郑小龙, 沈静娴, 等. 液体静压导轨转台轴向振动的动力学建模与分析[J]. 工程力学, 2012, 29(3): 218-225. 
Ye Hong-ling, Zheng Xiao-long, Shen Jing-xian, et al. Dynamic modeling and analysis of axial vibration of the hydrostatic slide turntable[J]. Engineering Mechanics,2012, 29(3): 218-225.
[5]  赵建华. 龙门车铣中心液体静压导轨性能的理论分析与实验研究[D]. 秦皇岛: 燕山大学博士学位论文, 2013: 15-57.
Zhao Jian-hua. Theoretical analysis and experimental research of liquid hydrostatic slide’s performance of gantry turning and milling center[D]. Qinhuangdao: Doctoral Dissertation of Yanshan University, 2013: 15-57.
[6]  熊万里, 侯志泉. 基于动网格模型的液体动静压轴承刚度阻尼计算方法[J]. 机械工程学报, 2012, 48(23): 118-126.
XIONG Wan-li, HOU Zhi-quan. Method for calculating stiffness and damping coefficients for hybrid bearings based on dynamic mesh model[J]. Journal of Mechanical Engineering, 2012, 48(23): 118-126.
[7] Chen Dong-ju, Fan Jin-wei, et al. Dynamic and static characteristics of a hydrostatic spindle for machine tools[J]. Journal of Manufacturing Systems, 2012, 31: 26-33.
 [8] Bouzidane A, Thomas M. Equivalent stiffness and damping investigation of a hydrostatic journal bearing. Tribology Transactions, 2007, 50(2): 257–267.
[9] DU Yi-kang, MAO Kuan-min, ZHU Ya-ming, et al. Dynamic modeling of hydrostatic guideway considering compressibility and inertial effect[J]. Frontiers of Mechanical Engineering, 2015, 10(1): 78-88.
[10] 杨小高, 王勇勤, 江桂云, 等. 基于固定节流的径向滑动轴承动态特性[J]. 中南大学学报(自然科学版), 2014, 45(9): 2993-3000.
Yang Xiao-gao, Wang Yong-qin, Jiang Gui-yun, et al. Dynamic Characteristics of hydrostatic fixed throttled journal bearing[J]. Journal of Central South University (Science and technology), 2014, 45(9): 2993-3000.
[11] 于贺春, 马文琦, 赵广, 等. 船舶增压器静压气体轴承-转子系统动力学特性研究[J]. 振动与冲击, 2011, 30(12):1-6.
Yu He-chun, Ma Wen-qi, Zhao Guang, et al. Dynamic Characteristics of an aerostatic bearing-rotor system with a ship turbocharger[J]. Journal of Vibration and Shock, 2011, 30(12): 1-6.
[12] SHAO Jun-peng. The effect of oil cavity depth on temperature filed in heavy hydrostatic thrust bearing[J]. Journal of Hydrodynamics, 2011, 23(5): 676-680.
[13] MARUIS P. Research concerning the influence of the lubricant temperature on the functioning of hydrostatic guideway systems[J]. Journal of Engineering Studies and Research, 2012, 18(4): 71-77.
[14] CHO M S, CHOI H J, et al. Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 46(2005):11484-11488.
[15] 丁振乾. 流体静压支承设计[M]. 上海: 上海科学技术出版社, 1989: 35-66.
Ding Zhen-qian. Design of liquid hydrostatic bearing[M]. Shanghai: Shanghai Science and Technology Press, 1989: 35-66.
[16] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J]. Tribology International, 2008, 41: 1190-1204.
[17] ROWE W B, CHONG F S. Computation of dynamic force coefficients for hybrid (hydrostatic/hydrodynamic) journal bearings by the finite disturbance and perturbation techniques[J]. Tribology International, 1986, 19(5): 260-271.
[18] CHO M S, CHOI H J, et al. Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 2005, 46: 11484-11488.
[19] 朱红钧. ANSYS 14.5 热流固耦合实战指南[M]. 北京:人民邮电出版社, 2014: 15-86.
Zhu Hong-jun. Manual of heat-fluid-structure coupling of ANSYS14.5 [M]. Beijing: POSTS & TELEGRAM PRESS, 2014: 15-86.
 

PDF(1653 KB)

924

Accesses

0

Citation

Detail

段落导航
相关文章

/