[1] Ko Y G, Choi U S. Negative electrorheological fluids[J]. Journal of Rheology, 2013, 57(6): 1655-1667.
[2] Bouzidance A, Thomas M. An electrorheological hydrostatic journal bearing for controlling rotor vibration[J]. Computers and structures, 2008, 86: 463-472.
[3] Aoyama T, Inasaki I. Application of electro-rheological fluid dampers to machine tool elements[J]. Annals of CIRP, 1997, 46: 309-312.
[4] 叶红玲, 郑小龙, 沈静娴, 等. 液体静压导轨转台轴向振动的动力学建模与分析[J]. 工程力学, 2012, 29(3): 218-225.
Ye Hong-ling, Zheng Xiao-long, Shen Jing-xian, et al. Dynamic modeling and analysis of axial vibration of the hydrostatic slide turntable[J]. Engineering Mechanics,2012, 29(3): 218-225.
[5] 赵建华. 龙门车铣中心液体静压导轨性能的理论分析与实验研究[D]. 秦皇岛: 燕山大学博士学位论文, 2013: 15-57.
Zhao Jian-hua. Theoretical analysis and experimental research of liquid hydrostatic slide’s performance of gantry turning and milling center[D]. Qinhuangdao: Doctoral Dissertation of Yanshan University, 2013: 15-57.
[6] 熊万里, 侯志泉. 基于动网格模型的液体动静压轴承刚度阻尼计算方法[J]. 机械工程学报, 2012, 48(23): 118-126.
XIONG Wan-li, HOU Zhi-quan. Method for calculating stiffness and damping coefficients for hybrid bearings based on dynamic mesh model[J]. Journal of Mechanical Engineering, 2012, 48(23): 118-126.
[7] Chen Dong-ju, Fan Jin-wei, et al. Dynamic and static characteristics of a hydrostatic spindle for machine tools[J]. Journal of Manufacturing Systems, 2012, 31: 26-33.
[8] Bouzidane A, Thomas M. Equivalent stiffness and damping investigation of a hydrostatic journal bearing. Tribology Transactions, 2007, 50(2): 257–267.
[9] DU Yi-kang, MAO Kuan-min, ZHU Ya-ming, et al. Dynamic modeling of hydrostatic guideway considering compressibility and inertial effect[J]. Frontiers of Mechanical Engineering, 2015, 10(1): 78-88.
[10] 杨小高, 王勇勤, 江桂云, 等. 基于固定节流的径向滑动轴承动态特性[J]. 中南大学学报(自然科学版), 2014, 45(9): 2993-3000.
Yang Xiao-gao, Wang Yong-qin, Jiang Gui-yun, et al. Dynamic Characteristics of hydrostatic fixed throttled journal bearing[J]. Journal of Central South University (Science and technology), 2014, 45(9): 2993-3000.
[11] 于贺春, 马文琦, 赵广, 等. 船舶增压器静压气体轴承-转子系统动力学特性研究[J]. 振动与冲击, 2011, 30(12):1-6.
Yu He-chun, Ma Wen-qi, Zhao Guang, et al. Dynamic Characteristics of an aerostatic bearing-rotor system with a ship turbocharger[J]. Journal of Vibration and Shock, 2011, 30(12): 1-6.
[12] SHAO Jun-peng. The effect of oil cavity depth on temperature filed in heavy hydrostatic thrust bearing[J]. Journal of Hydrodynamics, 2011, 23(5): 676-680.
[13] MARUIS P. Research concerning the influence of the lubricant temperature on the functioning of hydrostatic guideway systems[J]. Journal of Engineering Studies and Research, 2012, 18(4): 71-77.
[14] CHO M S, CHOI H J, et al. Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 46(2005):11484-11488.
[15] 丁振乾. 流体静压支承设计[M]. 上海: 上海科学技术出版社, 1989: 35-66.
Ding Zhen-qian. Design of liquid hydrostatic bearing[M]. Shanghai: Shanghai Science and Technology Press, 1989: 35-66.
[16] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J]. Tribology International, 2008, 41: 1190-1204.
[17] ROWE W B, CHONG F S. Computation of dynamic force coefficients for hybrid (hydrostatic/hydrodynamic) journal bearings by the finite disturbance and perturbation techniques[J]. Tribology International, 1986, 19(5): 260-271.
[18] CHO M S, CHOI H J, et al. Shear stress analysis of a semiconducting polymer based electrorheological fluid system[J]. Polymer, 2005, 46: 11484-11488.
[19] 朱红钧. ANSYS 14.5 热流固耦合实战指南[M]. 北京:人民邮电出版社, 2014: 15-86.
Zhu Hong-jun. Manual of heat-fluid-structure coupling of ANSYS14.5 [M]. Beijing: POSTS & TELEGRAM PRESS, 2014: 15-86.