基于流-固耦合算法的跨/超声速曲壁板气动弹性分析

梅冠华 1,张家忠 2,康灿 1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 54-60.

PDF(3152 KB)
PDF(3152 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 54-60.
论文

基于流-固耦合算法的跨/超声速曲壁板气动弹性分析

  • 梅冠华 1,张家忠 2,康灿 1
作者信息 +

Transonic and supersonic curved panel aeroelastic analysis based on a fluid-structure coupling algorithm

  • MEI Guan-hua 1, ZHANG Jia-zhong 2, KANG Can 1
Author information +
文章历史 +

摘要

采用流-固耦合算法研究了曲壁板在跨/超声速气流下的气动弹性特征。首先,给出了曲壁板的Von Kármán几何大变形运动方程,并对其进行了标准有限元离散。然后,简述了流动的控制方程、数值解法、动网格和流-固耦合方式。最后,对曲壁板的气动弹性响应进行了数值模拟和分析。结果表明弯曲造成壁板的初始气动载荷非零,使得其与平壁板的气动弹性特征大相径庭:稳定的曲壁板存在静气动弹性变形;马赫数为2时,曲壁板失稳后,其颤振负向峰值远大于正向峰值,且弯曲高度的增大会诱发混沌型的振动;马赫数为0.8和0.9时,曲壁板仅会发生正向变形;马赫数为1.2时,失稳后曲壁板的颤振中心偏向了负方向。所得结果为高速飞行器的壁板设计和颤振抑制提供了依据,所提算法可推广应用于其它气动弹性问题的数值分析。

Abstract

A fluid-structure coupling algorithm was used to analyze curved panel aeroelastic behavior in transonic and supersonic airflow. First, with the Von Karman’s large deformation theory, the governing equation of curved panel was presented, and it was discretized by the standard finite element method. Then, the governing equations of fluid, numerical method, moving mesh and fluid-structure coupling way were introduced briefly. Finally, numerical simulations and analysis were carried out to study aeroelastic behavior of curved panels. Results demonstrate that the curvature causes nonzero initial aerodynamic load on the panel, this brings about great different aeroelastic features for curved panels compared with flat panels. Static aeroelastic deformation exists for the curved panel in stable state. At Mach 2, asymmetric flutter is born for the curved panel lost stability. As the curvature height increases, chaotic flutter can be induced. At Mach 0.8 and 0.9, the curved panel shows only positive aeroelastic deformation. At Mach 1.2, with its stability lost, the curved panel flutters more violently in the negative direction. The results obtained could guide the panel design and flutter suppression for high performance flight vehicles. Also the presented algorithm could be extended to numerically analyze other aeroelastic problems.

关键词

壁板颤振 / 流-固耦合 / 气动弹性

Key words

panel flutter / fluid-structure coupling / aeroelasticity

引用本文

导出引用
梅冠华 1,张家忠 2,康灿 1. 基于流-固耦合算法的跨/超声速曲壁板气动弹性分析[J]. 振动与冲击, 2016, 35(22): 54-60
MEI Guan-hua 1, ZHANG Jia-zhong 2, KANG Can 1. Transonic and supersonic curved panel aeroelastic analysis based on a fluid-structure coupling algorithm[J]. Journal of Vibration and Shock, 2016, 35(22): 54-60

参考文献

[1] McNamara J J, Friedmann P P, Powell K G, et al. Aeroelastic and aerothermoelastic behavior in hypersonic flow [J]. AIAA Journal, 2008, 46(10): 2591-2610.
[2] Lamorte N, Friedmann P P. Hypersonic aeroelastic and aerothermoelastic studies using computational fluid dynamics [J]. AIAA Journal, 2014, 52(9): 2062-2078.
[3] Dowell E H. Nonlinear oscillations of a fluttering plate [J]. AIAA Journal, 1966, 4(7): 1267-1275.
[4] Dowell E H. Nonlinear flutter of curved Plates [J]. AIAA Journal, 1969, 7(3): 424-431.
[5] Olson M D. Finite element approach to panel flutter [J]. AIAA Journal, 1967, 5(12): 226-227.
[6] Olson M D. Some flutter solutions using finite element [J]. AIAA Journal, 1970, 8(4): 747-752.
[7] Ye W L, Dowell E H. Limit cycle oscillation of a fluttering cantilever plate [J]. AIAA Journal, 1991, 29(11): 1929-1936.
[8] 梅冠华, 张家忠, 席光. 基于时滞惯性流形的二维平面壁板非线性气动弹性分析 [J]. 振动与冲击, 2012, 31(10): 141-146.
MEI Guan-hua, ZHANG Jia-zhong, Xi Guang. Nonlinear aeroelastic analysis of a two-dimensional panel based on inertial manifolds with delay [J]. Journal of Vibration and Shock, 2012, 31(10): 141-146.
[9] MEI Guan-hua, ZHANG Jia-zhong, WANG Zhuo-pu. Numerical analysis of panel flutter on inertial manifolds with delay [J]. Journal of Computational and Nonlinear Dynamics-Transactions of ASME, 2013, 8(2): 021009 (11 pages).
[10] Gray C E, Mei C. Large amplitude finite element flutter analysis of composite panels in hypersonic flow [J]. AIAA Journal, 1993, 31(6): 1090-1099.
[11] 李凯伦, 张家忠. 功能梯度材料薄板的热气动弹性数值分析方法及特性研究 [J]. 宇航学报, 2013, 34(9): 1177-1186.
LI Kai-lun, ZHANG Jia-zhong. Numerical analysis method and aerothermoelastic behaviors of temperature dependent functional graded panels [J]. Journal of Astronautics, 2013, 34(9): 1177-1186.
[12] Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician [J]. Journal of the Aeronautical Science, 1956, 23(12): 1109-1118.
[13] Davis G A, Bendiksen O O. Unsteady transonic two-dimensional Euler solutions using finite elements [J]. AIAA Journal, 1993, 31(6): 1051-1059.
[14] Davis G A. Transonic aeroelasticity solutions using finite elements in an arbitrary Larangian-Eulerian formulation [D]. Ph.D. thesis, University of California, Los Angeles. 1994.
[15] Gordiner R E, Fithen R. Coupling of a nonlinear finite element structural method with a Navier-Stokes solver [J]. Computers & Structures, 2003, 81(2): 75-89.
[16] Hashimoto A, Aoyama T. Effects of turbulent boundary layer on panel flutter [J]. AIAA Journal, 2009, 47(12): 2785-1791.
[17] Mublstein L, Gaspers P A, Riddle D W. An experimental study of the influence of the turbulent boundary layer on panel flutter [R]. NASA Paper No. TN D-4486, 1968.
[18] 窦怡彬, 徐敏, 蔡天星, 等. 基于CFD/CSD耦合的二维壁板颤振特性研究 [J]. 工程力学, 2011, 28(6): 176-188.
DOU Yi-bin, XU Min, CAI Tian-xing, et al. Investigation of a two-dimensional panel flutter based on CFD/CSD coupling method [J]. Engineering Mechanics, 2011, 28(6): 176-181.
[19] 梅冠华, 杨树华, 张家忠, 等. 用于跨/超声速壁板颤振精确分析的流-固耦合有限元算法 [J]. 西安交通大学学报, 2014, 48(1): 73-83.
MEI Guan-hua, YANG Shu-hua, ZHANG Jia-zhong. A fluid-structure coupling algorithm based on finite element method for precise analysis of transonic and supersonic panel flutter [J]. Journal of Xi’an Jiaotong University, 2014, 48(1): 73-83.
[20] MEI Guan-hua, ZHANG Jia-zhong, XI Guang, et al. Analysis of supersonic and transonic panel flutter using a fluid-structure coupling algorithm. Journal of Vibration and Acoustics-Transactions of ASME, 2014, 136(3): 031013 (11 pages).
[21] 安效民, 胥伟, 徐敏. 非线性壁板颤振分析 [J]. 航空学报, 2015, 36(4): 1119-1127.
AN Xiao-min, XU Wei, XU Min. Analysis of nonlinear panel flutter [J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1119-1127.
[22] Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.

PDF(3152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/