非对称大惯量刚性磁悬浮高速转子陀螺效应自适应抑制方法研究

沈易霏1,2,韩邦成1,2,郑世强1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 72-79.

PDF(3006 KB)
PDF(3006 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (22) : 72-79.
论文

非对称大惯量刚性磁悬浮高速转子陀螺效应自适应抑制方法研究

  • 沈易霏1,2,韩邦成1,2 ,郑世强1,2
作者信息 +

Research on the Adaptive Suppression of Gyroscopic Effect of Rigid Asymmetric Magnetically Suspended High-Speed Rotor with Large Inertia

  • SHEN Yifei1,2   HAN Bangcheng1,2   ZHENG Shiqiang1,2
Author information +
文章历史 +

摘要

针对磁悬浮分子泵中非对称大惯量刚性磁悬浮转子高速运行时出现的涡动模态失稳的问题,建立了非对称刚性转子的动力学模型,并提出了一种针对非对称转子的转速自适应的多通道单边滤波PIDC控制方法,在不同的转速段内自动切换反馈通道,通过优化预调参数对转子远离质心一端出现的涡动模态失稳的现象进行相位补偿,仿真结果表明,这种PIDC控制算法简单易用,可以有效解决高速下陀螺效应导致的转子一端进动和章动模态失稳的问题。通过实验验证了该方法的可靠性,分子泵样机平稳升速到21000r/min,样机达到了设计真空性能指标。

Abstract

A dynamic model for rigid asymmetric rotor is established due to the problem that the instability of vortex motion of unilateral rotor appears when the rigid asymmetric magnetically suspended rotor with large inertia run at high speed. Meanwhile, a speed-adaptive multi-channel unilateral filtering PIDC control method is presented, which can compensate the phase of the instability of vortex motion of the end away from the centroid of the rotor through optimizing the preset parameters by switching cross feedback channel in different rotational speed interval automatically. The simulation results shows that this easily-used method of PIDC control can effectively resolve the instability of precession and nutation modes at one end of the rotor which is caused by gyroscopic effect of the rotor at high speed. Experiment verifies the reliability of this method: the prototype of molecular pump increasing the speed to 21000r/min smoothly achieves the design specification of vacuum performance.

关键词

非对称 / 陀螺效应 / 转速自适应 / 多通道单边滤波 / PIDC控制

Key words

asymmetric / gyroscopic effect / speed-adaptive / multi-channel unilateral filter / PIDC control

引用本文

导出引用
沈易霏1,2,韩邦成1,2,郑世强1,2. 非对称大惯量刚性磁悬浮高速转子陀螺效应自适应抑制方法研究[J]. 振动与冲击, 2016, 35(22): 72-79
SHEN Yifei1,2 HAN Bangcheng1,2 ZHENG Shiqiang1,2. Research on the Adaptive Suppression of Gyroscopic Effect of Rigid Asymmetric Magnetically Suspended High-Speed Rotor with Large Inertia[J]. Journal of Vibration and Shock, 2016, 35(22): 72-79

参考文献

[1] Chen S L, Weng C C. Robust control of a voltage-controlled three-pole active magnetic bearing system[J]. Mechatronics,
IEEE/ASME Transactions on, 2010, 15(3): 381-388.
[2] 朱熀秋, 曾润章. 交流磁轴承技术研究进展[J]. 电机与控制应用, 2014, 41(9): 45-50.
ZHU Huang-qiu, ZENG Run-zhang. Advances in AC magnetic bearing technology[J]. Electric Machines & Control Application, 2014, 41(9): 45-50.
[3] Noh M D, Cho S R, Kyung J H, et al. Design and implementation of a fault-tolerant magnetic bearing system for turbo-molecular vacuum pump[J]. Mechatronics, IEEE/ASME Transactions on, 2005, 10(6): 626-631.
[4] 韩放. 叶片—转子系统振动特性与参数辨识方法研究[D]. 大连理工大学, 2013.
HAN Fang. Research on Dynamics Problem of Blade-Rotor System and Parameters Identification Method[D]. Dalian University of Technology,2013.
[5] Wang L, Cao D Q, Huang W. Nonlinear coupled dynamics of flexible blade–rotor–bearing systems[J]. Tribology International, 2010, 43(4): 759-778.
[6] Blusseau P, Patel M H. Gyroscopic effects on a large vertical axis wind turbine mounted on a floating structure[J]. Renewable Energy, 2012, 46(5):31–42.
[7] 夏元清, 付梦印, 邓志红,等. 滑模控制和自抗扰控制的研究进展[J]. 控制理论与应用, 2013, 30(2):137-147.
XIA Yuan-qing, FU Meng-yin, DENG Zhi-hong, REN Xue-mei. Recent developments in sliding mode control and
active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(2):137-147.
[8] Wen X L, Song C S, Cao C, et al. Study of the LQR controller for magnetic flywheel rotor system[C]//Applied Mechanics and Materials. 2012, 150: 221-226.
[9] Liu L, Zhang G S. State and output control for linear systems based on eigenstructure assignment[J]. Journal of Tianjin University of Technology, 2013.
[10] Noshadi A, Shi J, Lee W S, et al. High performance H∞ control of non-minimum phase Active Magnetic Bearing system[C]// Industrial Electronics Society, IECON 2014 - 40th Annual Conference of the IEEEIEEE, 2014:183-189.
[11] 陆豪, 李运华, 田胜利, 等. 驱动大惯量低刚度负载的推力矢量控制电动伺服机构的μ综合鲁棒控制[J]. 机械工程学报, 2011, 47(2): 180-188.
LU Hao, Li Yun-hua, TIAN Sheng-li, CHEN Jian-tao. μ Synthesis Robust Control of Thrust Vector Control Electric Servo Mechanism Driving Large Inertia and Low Stiffness[J]. Journal of Mechanical Engineering, 2011, 47(2): 180-188.
[12] Chen Y, Davis T A, Hager W W, et al. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate[J]. Acm Transactions on Mathematical Software, 2008, 35(3):1--14.
[13] Fan Y H, Fang J C. Experimental research on the nutational stability of magnetically suspended momentum flywheel in control moment gyroscope (CMG)[C]//9th International Symposium on Magnetic Bearings, Lexington, KY, Aug. 2004: 3-6.
[14] Chen X, Chen M. Precise control of a magnetically suspended double-gimbal control moment gyroscope using differential geometry decoupling method[J]. Chinese Journal of Aeronautics, 2013, 26(4):1017–1028.
[15] Tong W, Jiancheng F. A feedback linearization control for the nonlinear 5-DOF flywheel suspended by the permanent magnet biased hybrid magnetic bearings[J]. Acta Astronautica, 2012, 79: 131-139.
[16] 张  剀,赵  雷,赵鸿宾. 电磁力超前控制在磁悬浮飞轮中的应用[J]. 机械工程学报,2004,40(7):175-179.
Zhang Kai, Zhao Lei, Zhao Hong-bin. Application of Magnetic Force Lead Control on a Flywheel Suspended by AMBS[J]. Journal of Mechanical Engineering, 2004, 40(7): 175-179.
[17] Ahrens M, Kucera L. Cross feedback control of a magnetic bearing system: Controller design considering gyroscopic effects[C]//In Eidgenoessische Technische Hochschule, Third International Symposium on Magnetic Suspension Technology p 177-191(SEE N 96-35897 12-18). 1996, 1996.
[18] Wang L, Cao D Q, Huang W. Nonlinear coupled dynamics of flexible blade–rotor–bearing systems[J]. Tribology International, 2010, 43(4): 759-778.
[19] Genta G. On the stability of rotating blade arrays[J]. Journal of Sound and Vibration, 2004, 273(4): 805-836.

PDF(3006 KB)

2172

Accesses

0

Citation

Detail

段落导航
相关文章

/