颗粒物质冲击损伤特性研究

何思明1,2,3 廖祖伟4 刘威1,2 闫帅星1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 100-105.

PDF(1169 KB)
PDF(1169 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 100-105.
论文

颗粒物质冲击损伤特性研究

  • 何思明1,2,3    廖祖伟4  刘威1,2      闫帅星1,2 
作者信息 +

STUDY ON IMPACT DAMAGE OF GRANULAR MATERIAL

  • HE Siming1, 2, 3    Liao Zuwei 4  Liu Wei1, 2   Yan Shuaixin1, 2
Author information +
文章历史 +

摘要

在离散元(DEM)模拟过程中,颗粒物质的接触刚度对模拟结果有重要影响,而构成颗粒物质的材料本身存在大量的微观缺陷,由于在颗粒物质运动过程中反复冲击接触作用,必然导致颗粒物质内部微观缺陷的扩展和融合,使得颗粒物质的物理力学性质不断劣化,具体表现为接触刚度不断降低,直至发生冲击破碎。如何在离散元模拟过程中考虑颗粒物质的冲击损伤特性具有重要意义。本文以Hertz弹性接触力学为基础,结合连续损伤理论,定义了颗粒物质冲击损伤变量,建立了颗粒物质冲击损伤演化方程,提出了冲击损伤累积确定方法。结果表明:较小的冲击速度可以导致颗粒物质产生损伤,损失累积弱化了颗粒物质的接触刚度,损伤累积可导致颗粒破碎,在离散元模拟过程中应考虑颗粒物质的损伤累积。

Abstract

The normal contact stiffness of granular material has a significant influence on the results obtained by the Discrete Element Method (DEM). Under repeated impacts during movement, the micro-defects existed in granular materials will expand and converge and thus weaken the particle physical mechanical properties, i.e. the particle contact stiffness decreases gradually till the particle finally crash. Based on Hertz Elasticity Theory and Continuum Damage Mechanics, this paper defined an impact damage variable of granular materials and proposed an impact damage evolution equation to calculate impact damage accumulation.The results indicate that the material damage can be detected even at low impact velocity, and the accumulation of impact damage decreases the contact stiffness which may result in final breakage of the particles. Thus, as a common phenomenon, damage accumulation should be taken into consideration in Discrete Element analysis to obtain an accurate result in future.

关键词

颗粒物质 / 冲击损伤 / Hertz 接触理论 / 损伤累积 / 离散元

Key words

Granular material / impact damage / Hertz theory / damage accumulation / Discrete Element Method (DEM)

引用本文

导出引用
何思明1,2,3 廖祖伟4 刘威1,2 闫帅星1,2 . 颗粒物质冲击损伤特性研究[J]. 振动与冲击, 2016, 35(23): 100-105
HE Siming1, 2, 3 Liao Zuwei 4 Liu Wei1, 2 Yan Shuaixin1, 2. STUDY ON IMPACT DAMAGE OF GRANULAR MATERIAL[J]. Journal of Vibration and Shock, 2016, 35(23): 100-105

参考文献

[1]  何思明,吴永,李新坡,颗粒弹塑性碰撞理论模型,工程力学,2008,25(12): 19 —24.
He Siming,Wu Yong,LI Xinpo, Theory model on elastic-plastic granule impact,  ENGINEERING  MECHANICS, 2008,25(12):19—24. (in Chinese)
[2] Lu L S, Hsiau S S, DEM simulation of particle mixing in a sheared granular flow [J]. Particuology, 2008, 6(6): 445—454.
[3]  Kim B. S, Park S. W, Kato S, DEM simulation of collapse behaviours of unsaturated granular materials under general stress states [J].  Computers and Geotechnics, 2012, 42: 52—61.
[4]  Zhou G, Sun Q. C,Three-dimensional numerical study on flow regimes of dry granular flows by DEM [J]. Powder Technology, 2013, 239: 115—127.
[5]  Shamsi M, Mirghasemi A A, Numerical simulation of 3D semi-real-shaped granular particle assembly [J]. Powder Technology,  2012, 221(SI): 431—446.
[6]  Zhang X, Vu-Quoc L, A method to extract the mechanical properties of particles in collision based on a new elasto-plastic normal force-displacement model [J]. Mechanics of Materials, 2002, 34(12): 779—794.
[7] Vu-Quoc L, Zhang X, Lesburg L, Normal and tangential force-displacement relations for frictional elasto- plastic contact of sphere [J], International Journal of Solid and Structures, 2001, 38(36-37): 6455—6489.
[8] Vu-Quoc L,Zhang X, An accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations [J]. Mechanics of Materials, 1999, 31(4): 235—269.
[9]  Salciarini D, Tamagnini C, Conversini P, Discrete element modeling of debris-avalanche impact on earthfill barriers [J]. Physics and Chemistry of the Earth, 2010, 35(3-5): 172—181.
[10] Lo C M, Lin M L, Tang C L, Hu J C, A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit [J]. Engineering Geology, 2011, 123(1-2SI): 22—39.
[11] Wei Chao Li, Hong Jie Li , F.C. Dai, Lee Min Lee, Discrete element modeling of a rainfall-induced flowslide [J], Engineering Geology , 2012, 149: 22—34.
[12] Rainer Poisel ,Hans Angerer,Max Pllinger, Thomas Kalcher,Harald Kittl,Mechanics and velocity of the  Larchberg-Galgenwald landslide (Austria) [J], Engineering Geology, 2009, 109(1-2): 57—66.
[13] Tavares L M, King R P, Modeling of particle fracture by repeated impacts using continuum damage mechanics [J],                                         Power technology, 2002, 123(2-3): 138—146.                                
[14] Tavares L M, King R P, Single-particle fracture under impact loading [J]. International Journal Miner Processing, 1998, 54(1): 1—28.
[15] Tavares L.M, de Carvalho R. M, Modeling ore degradation during handling using continuum damage mechanics [J]. International Journal of Mineral Processing, 2012 112(SI): 1-6.
[16] Tavares L.M, Analysis of particle fracture by repeated stressing as damage accumulation [J]. Powder Technology 2009, 190(3): 327—339.
[17] 程育仁,缪龙秀,侯炳麟,疲劳强度[M]. 北京:中国铁道出版社,1990.
Chen Yuren, Niu Longxiu, Hou Binglin, Fatigue strength [M]. Beijing: China Railway Publishing House, 1990. (in Chinese)

PDF(1169 KB)

Accesses

Citation

Detail

段落导航
相关文章

/