基于奇异摄动法的FFFSR全局滑模跟踪控制及ESO振动抑制

庞哲楠1,张国良1,羊 帆1,2,吴 戈1,陈志侃1

振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 14-22.

PDF(1945 KB)
PDF(1945 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 14-22.
论文

基于奇异摄动法的FFFSR全局滑模跟踪控制及ESO振动抑制

  • 庞哲楠1,张国良1,羊 帆1,2,吴 戈1,陈志侃1
作者信息 +

Global Sliding Mode Tracking Control and ESO Vibration Suppression for Free-Floating Flexible Space Robot Based on Singular Perturbation Method

  • PANG Zhe-nan1, ZHANG Guo-liang1, YANG Fan1,2, WU Ge1, CHEN Zhi-kan1
Author information +
文章历史 +

摘要

针对存在参数不确定性和有界干扰的情况,讨论了自由漂浮柔性空间机器人(FFFSR)关节轨迹跟踪控制与柔性振动主动抑制的问题。利用奇异摄动法将系统分解为关节轨迹跟踪的慢变子系统和描述柔性振动的快变子系统,进而提出含慢、快变控制项的组合控制器。设计一种改进的全局滑模函数,利用低通滤波器抑制滑模抖振,实现全局鲁棒、快速收敛的关节轨迹跟踪。对于快变子系统,采用扩张状态观测器(ESO)对不易测量的柔性模态坐标导数和不确定扰动进行估计,并结合LQR方法,对柔性振动进行主动抑制。数值仿真表明,该组合控制器可以在有效抑制柔性振动的同时实现对期望关节轨迹的稳定跟踪。

Abstract

Joints trajectory tracking control and flexible vibration active suppression techniques for a free-floating flexible space robot (FFFSR) are discussed under parameter uncertainties and bounded disturbance. A composite controller containing a slow control subsystem for joints trajectory tracking control and a fast control subsystem for describing flexible vibration is proposed using singular perturbation method. In the slow subsystem, an improved global sliding mode function with a low pass filter to suppress sliding mode chattering is designed to achieve global robust and fast convergence of the tracking. The fast subsystem adopts an extended state observer (ESO) to estimate coordinate derivatives of flexible modal and uncertain disturbance, which can hardly be measured, and use LQR method to suppress the flexible vibration. Numerical simulation results demonstrate the feasibility and effectiveness of the proposed control strategy.

关键词

柔性空间机器人 / 奇异摄动法 / 全局滑模控制 / 低通滤波器 / 扩张状态观测器 / 不确定性

Key words

Free-Floating Flexible Space Robot(FFFSR) / Singular Perturbation Method / Global Sliding Mode Control(GSMC) / Low-Pass Filter(LPF) / Extended State Observer(ESO) / Uncertainty

引用本文

导出引用
庞哲楠1,张国良1,羊 帆1,2,吴 戈1,陈志侃1. 基于奇异摄动法的FFFSR全局滑模跟踪控制及ESO振动抑制[J]. 振动与冲击, 2016, 35(23): 14-22
PANG Zhe-nan1, ZHANG Guo-liang1, YANG Fan1,2, WU Ge1, CHEN Zhi-kan1. Global Sliding Mode Tracking Control and ESO Vibration Suppression for Free-Floating Flexible Space Robot Based on Singular Perturbation Method[J]. Journal of Vibration and Shock, 2016, 35(23): 14-22

参考文献

[1] Junfeng L, Zhaolin W. Study on attitude dynamics of a liquid filled spacecraft with manipulator[J]. Journal of Astronautics, 1999, 20(2): 81-86.
[2] Angel, Ou Ma. A review of space robotics technologies for on-orbit servicing [J]. Progress in Aerospace Sciences,2014,68(1):1-26.
[3] 刘正雄, 黄攀峰. 基于递推差分进化算法的空间机器人参数辨识[J]. 宇航学报,2014, 35(10): 1127-1134.
LIU Zheng-xiong, HUANG Pan-feng. Parameter identification of space robot based on recursive different evolution algorithm[J]. Journal of Astronautics, 2014, 35(10): 1127-1134.
[4] 洪在地, 贠超, 陈力. 漂浮基空间机器人及其柔性影响下逆模神经网络控制[J]. 宇航学报, 2007, 28(6):1510-1514.
HONG Zai-di, YUN Chao, CHEN Li. Inverse-model neuro-control of free-floating space robot with rigid manipulators and rigid-flexible manipulators[J]. Journal of Astronautics, 2007, 28(6): 1510-1514.
[5] Hu Q, Xu L, Zhang A. Adaptive backstepping trajectory tracking control of robot manipulator[J]. Journal of the Franklin Institute, 2012, 349(3): 1087-1105.
[6] 谢箭, 刘国良, 颜世佐,等. 基于神经网络的不确定性空间机器人自适应控制方法研究[J]. 宇航学报, 2010,31(1):123-129.
XIE Jian, LIU Guo-liang, YAN Shi-zuo, et al. Study on Neural Network Adaptive Control Method for Uncertain Space Manipulator[J].Journal of Astronautics, 2010, 31(1): 123-129.
[7] Wang M, Li Y, Ren X. Adaptive Sliding Mode Control for Hydraulic Flexible Manipulator Based on Two-Parameter Singular Perturbation Method[C]//Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2013, 5th, International Conference on. IEEE, 2013, 2: 57-60.
[8] Zeng P L, Wang S X, Qiu J J, et al. Flexible Manipulator Control Based on Singular Perturbation Theory Study[C]//Applied Mechanics and Materials. 2013, 346: 69-73.
[9] 翟光, 张景瑞, 周志成.静止轨道卫星在轨延寿技术研究进展[J]. 宇航学报, 2012, 33(7):122-134.
ZHAI Guang, ZHANG Jing-rui, ZHOU Zhi-cheng. A review of on-orbit life-time extension technologies for GEO satellites[J]. Journal of Astronautics, 2012, 33(7): 122-134.
[10] 石苏忠, 王永智. 基于多项式插值的自由漂浮空间机器人轨迹规划粒子群优化算法[J].宇航学报,2011, 32(7):1516-1521.
SHI Su-zhong, WANG Yong-zhi. A polynomial interpolation based particle swarm optimization algorithm for trajectory planning of free-floating space robot [J]. Journal of Astronautics, 2011,32(7):1516-1521.
[11] Y S Lu, J S Chen. Design of a global Sliding-mode Controller for a Motor Drive with Bounded Control[J]. International Journal of Control, 1994,62(5):1001-1019.
[12] Mobayen S. An LMI-based robust controller design using global nonlinear sliding surfaces and application to chaotic systems[J]. Nonlinear Dynamics, 2014, 79(2): 1075-1084.
[13] Liu X, Wu Y, Deng Y, et al. A global sliding mode controller for missile electromechanical actuator servo system[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(7): 1095-1104.
[14] Chu Y, Fei J. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network[J]. Mathematical Problems in Engineering, 2015, (2015): 1-9.
[15] Fallaha C J, Saad M, Kanaan H Y, et al. Sliding-mode robot control with exponential reaching law[J]. Industrial Electronics, IEEE Transactions on, 2011, 58(2): 600-610.
[16] Yang J, Li S, Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer[J]. Industrial Electronics, IEEE Transactions on, 2013, 60(1): 160-169.
[17] Yang J, Su J, Li S, et al. High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach[J]. Industrial Informatics, IEEE Transactions on, 2014, 10(1): 604-614.
[18] Zhao D, Li C, Zhu Q. Low-pass-filter-based position synchronization sliding mode control for multiple robotic manipulator systems[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(8): 1136-1148.
[19] Zhang Q, Mills J K, Cleghorn W L, et al. Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links[J]. Multibody System Dynamics, 2015, 33(1): 27-60.
[20] 杨明, 董晨, 王松艳,等. 基于有限时间输出反馈的线性扩张状态观测器[J].自动化学报, 2015, 41(1):59-66.
YANG Ming, DONG Chen, WANG Song-yan, et al. Linear Extended State Observer Based on Finite-time Output Feedback[J]. Acta Automatica Sinica, 2015, 41(1):59-66.
[21] 于潇雁, 陈力. 参数不确定与有界干扰自由漂浮柔性空间机械臂基于速度观测器的奇异摄动鲁棒控制及振动抑制[J].振动与冲击, 2015, 34(14): 85-92.
YU Xiao-yan, CHEN Li. Velocity observer based singular perturbation robust control and vibration suppression for a free-floating space flexible manipulator with unknow payload parameters and bounded disturbances[J]. Journal of Vibration and Shock, 2015,34(14):85-92.
[22] Gao Z Q. Scaling and bangwidth-parameterization based controller tuning.[C]//Proceedings of the American Control Conference. 2006,6: 4989-4996.

PDF(1945 KB)

Accesses

Citation

Detail

段落导航
相关文章

/