为研究流场中离心叶轮受气流激振的受迫振动问题,利用叶盘结构的循环对称性编制计算程序,实现了使用循环对称模型进行非循环对称力作用下离心叶轮的谐响应分析。针对空间周期性的来流条件,由各扇区所受周期激励的相位差建立载荷向量,然后根据按扇区展开的叶轮各节径模态的振型数据,建立模态坐标系下的谐响应运动方程,计算得到叶轮的谐响应位移。以一半开式径向叶轮为例,进行了叶盘结构在气动力非循环对称分布情况下的谐响应分析。循环对称模型与整体模型计算的位移响应结果符合较好,两个共振点附近激振频率下的振动响应均呈现出较高的幅值,表明了算法的正确性和预测气流激励导致共振的有效性。
Abstract
In order to investigate the forced vibration problems of centrifugal impellers subjected to gas excitation in the flow fields, an algorithm to calculate the harmonic responses of impellers under non-cyclic exciting forces is realized using the cyclic model. The cyclic symmetry of structure is considered in the programming. For the spatially periodic inflow conditions, firstly the load vector is constructed according to the phase differences of periodic excitations among the sectors, and then by utilizing the modal shape data of different nodal diameters the harmonic response dynamic equations are established under the modal coordinate system to calculate the displacement response. Finally, the harmonic analyses of a radial impeller under non-cyclic aerodynamic exciting forces are carried out. The displacement response results obtained from the cyclic model agree well with those from the integral model. The responses under the exciting frequencies near two resonance points both show relatively higher amplitudes. All the results manifest the correctness of algorithm and its effectiveness to predict the resonance caused by gas excitation.
关键词
气流激振 /
非循环对称力 /
谐响应 /
节径 /
共振
{{custom_keyword}} /
Key words
Gas excitation /
Non-cyclic force /
Harmonic response /
Nodal diameter /
Resonance
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Dickens J M. Numerical methods for dynamic substructure analysis [D]. Berkeley: University of California, 1980.
[2] Petrov E P. A method for use of cyclic symmetry properties in analysis of nonlinear multi-harmonic vibrations of bladed disks [J]. Journal of Turbomachinery, 2004, 126(1): 175-183.
[3] 李松涛, 许庆余, 张小龙. 透平机械离心压缩机和离心泵叶轮动力分析的三维旋转循环对称CN群算法 [J]. 应用力学学报, 2005, 22 (2): 169-174.
LI Songtao, XU Qingyu, ZHANG Xiaolong. Application of CN group cyclic symmetry method to three-dimensional dynamic analysis of centrifugal compressor and pump impeller [J]. Chinese Journal of Applied Mechanics, 2005, 22 (2): 169-174.
[4] Fridh J, Laumert B, Fransson T. Forced response in axial turbines under the influence of partial admission [R]. ASME Paper GT2012-68303, 2012.
[5] Bladh R, Zhuang Qingyuan, Hu Jiasen, Hammar J. Leakage-induced compressor blade excitation due to inter-segment gaps [R]. ASME Paper GT2012-70040, 2012.
[6] Dickmann H P, Wimmel T S, Szwedowicz J, Filsinger D, Rounder C H. Unsteady flow in a turbocharger centrifugal compressor: 3D-CFD-simulation and numerical and experimental analysis of impeller blade vibration [R]. ASME Paper GT2005-68235, 2005.
[7] White N, Laney S, Zorzi C. RCFA for recurring impeller failures in a 4.7 Mtpa LNG train propane compressor [C]. Proceedings of the Fortieth Turbomachinery Symposium, Houston, USA, 2011.
[8] 毛义军, 祁大同, 许庆余. 离心压缩机叶轮叶片疲劳断裂故障的数值分析 [J]. 西安交通大学学报, 2008, 42(11): 1336-1339.
MAO Yijun, QI Datong, XU Qingyu. Numerical study on high cycle fatigue failure of centrifugal compressor impeller blades [J]. Journal of Xi'an Jiaotong University, 2008, 42(11): 1336-1339.
[9] Polizzi E. A high-performance numerical library for solving eigenvalue problems [R]. FEAST Solver v2.0 User's Guide, 2012.
[10] Zemp A, Abhari R S, Ribi B. Experimental investigation of forced response impeller blade vibration in a centrifugal compressor with variable inlet guide vanes - Part 1: blade damping [C]. Proceedings of ASME Turbo Expo 2011, Vancouber, Canada, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}