基于振动测试的张弦结构拉索索力识别

李素贞 1,Lapuerta Enrique Cavero 1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 148-152.

PDF(1061 KB)
PDF(1061 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 148-152.
论文

基于振动测试的张弦结构拉索索力识别

  • 李素贞 1 ,Lapuerta Enrique Cavero 1,2
作者信息 +

Vibration-based methods for cable tension estimation of cable-supported structures

  • Suzhen Li 1    LAPUERTA Enrique Cavero  1,2
Author information +
文章历史 +

摘要

张弦结构的拉索索力识别对拉索甚至整个结构的性态鉴定和可靠性评估具有重要意义。本文针对张弦结构中拉索索力识别应用,选取了5种基于振动测试的解析方法——3种传统的索力实用计算公式和2种新发展的边界不确定的索力识别方法,比较分析了不同方法的优点和不足之处,探讨了索的边界条件、抗弯刚度和长细比的影响,确立了各种方法的适用范围和使用条件。分析结果表明:传统索力实用计算公式仅在边界条件比较明确(简支或固定)的情况下适用;当拉索的边界条件不确定时,宜采用Euler梁方法和Timohenko梁方法进行索力识别;当拉索的长细比小于20时,宜采用Timohenko梁方法;弦理论、Shimada方法和Zui方法必须采用局部模态;Euler梁方法和Timohenko梁方法既可采用局部模态,也可采用整体模态。

Abstract

Estimation of the actual cable tension of cable-supported structures is significant for the examination and assessment of these sensitive elements as well as for the reliability evaluation of the whole structure. Aiming to cable tension estimation of cable-supported structures, this paper carry out a comparative study upon five vibration-based analytical methods-three practical formulas and two newly-developed methods in order to get a contrasted view of their advantages and disadvantages. The effects of the boundary conditions, the bending stiffness and the slenderness on the estimation accuracy of the cable tension are investigated, based on which the ranges of applicability and effectiveness of the five methods are determined. It has been verified that the traditional methods are only accurate for the fixed or hinged members vibrating on their local mode shapes while the new methods, derived from Euler and Timoshenko beams, are effective for most of the cases especially when the boundary conditions of the cable are unknown. Moreover, the Timoshenko beam method is more stable and more accurate than the Euler beam method when the slenderness ratio is less than 20.

关键词

索力识别 / 张弦结构 / 振动测试

引用本文

导出引用
李素贞 1,Lapuerta Enrique Cavero 1,2 . 基于振动测试的张弦结构拉索索力识别[J]. 振动与冲击, 2016, 35(23): 148-152
Suzhen Li 1 LAPUERTA Enrique Cavero 1,2 . Vibration-based methods for cable tension estimation of cable-supported structures[J]. Journal of Vibration and Shock, 2016, 35(23): 148-152

参考文献

[1] Starossek, U. Cable dynamics-a review [J]. Structural Engineering International, 1994, 3: 171-176.
[2] Irvine, H. M. and Griffin, J. H. On the Dynamic Response of a Suspended Cable [J]. Earthquake Engineering and Structural Dynamics, 1976, 4: 389-402.
[3] Park S., Choi S., Oh S.T., et.al. Identification of the tensile force in high-tension bars using modal sensitivities [J]. International Journal of Solids and Structures, 2006, 43(10): 3185–3196.
[4] Shimada, T., Kimoto, K. and Narui, S. Study on estimating tension of tied hanger rope of suspension bridge by vibration method [C]. Proc. Japan Society of Civil Engineers, JSCE, 1989, 404(I-11): 455-458.
[5] Tullini N. and Laudiero F. Dynamic identification of beam axial loads using one flexural mode shape [J]. Journal of Sound and Vibration, 2008, 318: 131-147.
[6] Russell J.C., Lardner T.J. Experimental determination of frequencies and tension for elastic cables [J]. Journal of Engineering Mechanics, ASCE, 1998, 124 (10):1067–1072.
[7] Zui H., Shinke T., Namita Y. Practical formulas for estimation of cable tension by vibration method [J]. Journal of Structural Engineering, ASCE, 1996, 122: 651–656.
[8] Mehrabi A.B., Tabatabai H. Unified finite difference formulation for free vibration of cables [J]. Journal of Structural Engineering, ASCE, 1998, 124:1313–1322.
[9] Ni Y., Ko J., Zheng J. Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity [J]. Journal of Sound and Vibration, 2002, 257:301-319.
[10] Kim B.H., Park T. Estimation of cable tension force using the frequency-based system identification method [J]. Journal of Sound and Vibration, 2007, 304: 660-676.
[11] Li S.Z., Reynders E., Maes K., De Roeck G. Vibration-based estimation of axial force for a beam member with uncertain boundary conditions[J]. Journal of Sound and Vibration, 2013, 332 (2): 795-806.
[12] Maes K., Peeters J., Reynders E., Lombaert G., De Roeck G. Identification of axial forces in beam members by local vibration measurements [J]. Journal of Sound and Vibration, 2013, 332 (10):5417-5432.
[13] 张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(I):振动特性的参数分析 [J]. 振动与冲击, 2009, 28 (3): 152-157
[14] 张宇鑫,李国强,赵世峰.张弦梁结构振动方法索力识别(II):实用公式及误差分析 [J]. 振动与冲击, 2009, 28 (3): 158-160

PDF(1061 KB)

Accesses

Citation

Detail

段落导航
相关文章

/