基于子结构导纳法的UUV发动机本体参数化建模研究

韩 飞,王敏庆

振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 185-190.

PDF(1959 KB)
PDF(1959 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (23) : 185-190.
论文

基于子结构导纳法的UUV发动机本体参数化建模研究

  • 韩  飞,王敏庆
作者信息 +

Parametric Modeling of UUV Engine body based on Substructure Receptance Method

  • HAN Fei, WANG Min-qing
Author information +
文章历史 +

摘要

为实现UUV发动机本体结构的参数化建模,基于模态分析结果以及外部激励特性,建立子结构等效模型,根据能量守恒原理以及导纳功率流的定义计算了各子结构的等效线导纳,根据边界连续条件确定耦合结构振动方程,最终建立了发动机本体振动传递参数化模型,计算了发动机本体不同位置处的输入导纳。通过试验对模型的有效性进行了验证。以发动机本体所受激励作为输入,根据所建模型开展了参数影响分析,结果表明:在400Hz~1.8kHz频段内,气缸轴向力以及滚轮切向力对舱段壳振动响应的贡献较大,建模中需要考虑发动机不同方向上的振动传递特性;增大摆盘箱端盖厚度能够显著降低舱段壳的振动响应。

Abstract

To achieve an parametric model of UUV engine body, considering modal analysis result and external excitation characteristic, the equivalent model of each substructure was established and their line receptances were calculated based on energy conservation and the definition of mobility power flow. According to boundary conditions, the coupling vibration equation was established, and finally a parametric model of engine body was obtained. The input receptances of engine body at different position were calculated. The model was validated by mechanical receptance experiment. With external excitation as input parameter, the influences of some major parameters vibration were analyzed. Results show that at 400Hz~1.8kHz, the axial force which is applied on cylinder block and the roller force make major contribution to the vibration response of cabin shell, vibration characteristic of different direction needs to be considered in the research of engine modeling; increasing the thickness of swashplate box can significantly reduce the vibration response of cabin shell.

关键词

振动传递 / 子结构 / 机械导纳 / 参数化建模

Key words

vibration transmission / substructure / mechanical receptance / parametric modeling

引用本文

导出引用
韩 飞,王敏庆. 基于子结构导纳法的UUV发动机本体参数化建模研究[J]. 振动与冲击, 2016, 35(23): 185-190
HAN Fei, WANG Min-qing . Parametric Modeling of UUV Engine body based on Substructure Receptance Method[J]. Journal of Vibration and Shock, 2016, 35(23): 185-190

参考文献

[1] 何惠江, 李  楠. 基于APDL的鱼雷壳体结构参数化建模[J]. 鱼雷技术, 2010, 18(4): 246-248.
HE Hui-jiang, LI Nan. Parametric Modeling of Torpedo Shell Structure Based on APDL[J]. Torpedo Technology, 2010, 18(4): 246-248.
[2] 曹银萍, 石秀华. 基于ANSYS的鱼雷有限元建模与模态分析[J]. 弹箭与制导学报, 2009, 29(3): 289-292.
CAO Yin-ping, SHI Xiu-hua. Finite Element Modeling and Modal Analysis of Torpedo Based on ANSYS[J]. Journal of Projectiles, Rockets, Misseles and Guidance, 2009, 29(3): 289-292.
[3] 秦晓辉, 尹韶平. 统计能量分析在鱼雷结构振动及声辐射研究中的应用[J]. 鱼雷技术, 2006, 14(1): 24-27.
QIN Xiao-hui, YIN Shao-ping. Application of Statistical Energy Analysis to Structure Vibration and Sound Radiation of Torpedo[J]. Torpedo Technology, 2006, 14(1): 24-27.
[4] 丁少春, 朱石坚, 楼京俊. 鱼雷结构振动与声辐射的统计能量分析[J]. 浙江大学学报(工学版), 2009, 43(7): 1222-1224.
DING Shao-chun, ZHU Shi-jian, LOU Jing-jun. Statistical energy analysis on structure vibration and sound radiation from torpedo[J]. Journal of Zhejiang University Engineering Scicene, 2009, 43(7): 1222-1224.
[5] 刘  凯, 朱石坚, 丁少春. 基于AutoSEA的鱼雷结构辐射噪声预报方法[J]. 鱼雷技术, 2010, 18(2): 91-94.
LIU Kai, ZHU Shi-jian, DING Shao-chun. A Prediction Method for Structural Noise Radiation of Torpedo Based on AutoSEA[J]. Torpedo Technology, 2010, 18(2): 91-94.
[6] 马锐磊, 尹韶平, 曹小娟, 等. 基于FEM的鱼雷低频振动环境预示方法研究[J]. 舰船电子工程, 2014, 34(5): 136~139.
MA Rui-lei, YIN Shao-ping, CAO Xiao-juan, et al. Torpedo’s Vibration Environment Prediction Method of Low Frequency Based on FEM[J]. Ship Electronic Engineering, 2014, 34(5):136~139.
[7] J M Cuschieri. Structural power-flow analysis using a mobility approach of an L-shaped plate[J]. Journal of the Acoustical Society of America, 1990, 87(3): 1159-1165.
[8] 梁  跃, 何长富, 彭  博. 鱼雷热动力发动机机体振动模态分析[J]. 鱼雷技术, 2005, 13(4):18-20.
LIANG Yue, HE Chang-fu, PENG Bo. Srtuctural Vibration Modal Analysis of Torpedo Thermal Power Engine[J]. Torpedo Technology, 2005, 13(4):18-20.
[9] 阿•斯•尼基福罗夫. 船体结构声学设计[M]. 谢信, 王轲 译校. 北京: 国防工业出版社, 1998.
[10] 赵芝梅, 王敏庆. 板壳结构振动功率流的子结构线导纳法研究[J]. 工程力学, 2012, 29(8):294-301.
ZHAO Zhi-mei, WANG Min-qing. A Structure Line Receptance Method for Analysis of Power Flow in a Clylindrical Shell with a Floor Partition.[J] Engineering Mechanics, 2012, 29(8):294-301.
[11] Soedel W. Vibration of shells and plates[M]. New York: Marcel Dekker, 1993.
[12] 李  鑫, 王志刚, 万荣华, 等. 基于虚拟样机技术的鱼雷周转斜盘发动机动力学分析[J]. 鱼雷技术, 2011, 19(4): 285~289.
LI Xin, WANG Zhi-gang, WAN Rong-hua,et al. Dynamic Analysis of Torpedo Swashplate Engine Based on Virtual Protoyype Technology[J]. Torpedo Technology, 2011, 19(4): 285~289.
[13] 张进军, 杨  杰,钱志博. 基于虚拟样机技术的摆盘发动机仿真[J]. 计算机仿真, 2012, 29(4):328~332.
ZHANG Jin-jun, YANG Jie, QIAN Zhi-bo. Simulation of Swashplate Engine Based on Virtual Prototyping Technology[J]. Computer Simulation, 2012, 29(4):328~332.
 

PDF(1959 KB)

Accesses

Citation

Detail

段落导航
相关文章

/