由于加工、测量、安装、老化等原因,排气系统吊耳和波纹管的真实刚度通常在其名义设计值附近波动,使得排气系统真实的静、动态性能与其名义设计值之间存在偏差。为提升汽车排气系统振动及橡胶吊耳疲劳耐久性能的稳健性,以吊耳和波纹管动刚度为正态随机设计变量,以吊耳隔振量不小于20dB为约束条件,以挂钩垂向动态反力最大值及其标准差、吊耳的静变形量及预载力标准差为目标函数,建立了某乘用车排气系统振动和吊耳疲劳性能的多目标稳健优化模型。结果表明,与确定性优化方案相比,排气系统静、动态性能对稳健优化方案的灵敏度降低,实施稳健优化方案将使得排气系统的振动和吊耳疲劳性能更加稳健。文中稳健优化方法对改善排气系统振动和吊耳疲劳耐久性的稳健性有较重要参考价值。
Abstract
Due to manufacturing, measurement, mounting and aging, the actual stiffness values of rubber hangers and sylphon bellows will fluctuate around their nominal design values. Accordingly, the static and dynamic performances of an exhaust system will also deviate from their nominal design values. In order to improve the isolation and fatigue durability robustness of vehicle exhaust systems, a robust multi-objective optimization model is proposed to minimize the static deflection and the preload standard deviation of rubber hangers, and extreme values of the vertical dynamic load transmitted to body including their standard deviation. In the optimization model, the dynamic stiffness of rubber hangers and sylphon bellows are taken as normal probabilistic design variables, and the vibration reduction of rubber hangers is constrained to be no smaller than 20dB. The optimization result shows that the static and dynamic performances of the exhaust system are less insensitive to the nominal design of the robust optimization than that of the deterministic one. That is to say, the vibration isolation and fatigue durability performances of the exhaust system are more robust by using the robust optimization design. The presented robust optimization method is of valuable reference for improving the robustness of ride comfort and the fatigue durability of vehicle exhaust systems.
关键词
排气系统 /
振动控制 /
优化 /
稳健性 /
疲劳
{{custom_keyword}} /
Key words
exhaust system /
vibration control /
optimization /
robustness /
fatigue
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 庞剑,谌刚,何华.汽车噪声与振动-理论与应用[M]. 北京:北京理工大学出版社, 2006.
[2] 田静.乘用车排气系统悬挂位置设计及隔振控制研究[D]. 武汉:武汉理工大学,2011.
[3] 黄志,范让林,段小成等. 汽车排气系统吊耳及设计原则[J]. 噪声与振动控制,2009,(2): 110-114.
HUANG Zhi, FAN Rang-lin, DUAN Xiao-cheng, etc. Structure characteristics and design principle of automobile exhaust system’s isolators[J]. Noise and Vibration Control, 2009,(2): 110-114.
[4] Ling S F and Pan T C. Vibration isolation of exhaust pipe under vehicle chassis [J]. International Journal of Vehicle Design, 1994, 15(Nos.1/2): 131~142.
[5] 李松波,靳永军,管西强,等. 动力总成对排气系统动力学影响研究及排气组件敏感度分析[J]. 汽车工程,2008, 30(4): 322-325.
LI Song-bo, JIN Yong-jun, GUAN Xi-qiang, etc. A study on the effect of powertrain on exhaust system dynamics and the sensitivity analysis of exhaust system components[J]. Automotive Engineering, 2008, 30(4): 322-325.
[6] 徐献阳. 车辆排气系统的振动模态分析及优化[D]:[ 硕士学位论文].上海:上海交通大学,2008.
[7] 上官文斌,黄志,贺良勇,等.汽车排气系统吊耳动刚度优化方法的研究[J]. 振动与冲击,2010, 29(1): 100-102.
SHANGGUAN Wen-bin, HUANG Zhi, HE Liang-yong, etc. Modeling and optimization method of dynamic stiffness for automotive exhaust system hangers[J]. Journal of Vibration and Shock, 2010, 29(1): 100-102.
[8] GMW 14116, Specification for 261 Powertrain Mounts: Body –Frame-Integral Sub-systems[S].North American:GM,2006.
[9] 沈渡,丁渭平,李洪亮,等. 汽车排气系统疲劳耐久性的CAE分析研究[J]. 汽车技术,2010, (6): 29-32.
SHEN Du, DING Wei-ping, LI Hong-liang, etc. CAE analysis study of automotive exhaust system fatigue durability[J]. Automobile Technology, 2010, (6): 29-32.
[10] 候献军,郑灏,刘志恩,等. 汽车排气系统局部疲劳耐久性试验仿真分析[J]. 汽车技术,2011, (3): 41-44.
HOU Xian-jun, ZHENG Hao, LIU Zhi-en, etc. Simulation and analysis of local fatigue durability test on vehicle exhaust system [J]. Automobile Technology, 2011, (3): 41-44.
[11] Hyo-Sig Kim, Hyo-Jin Cho and Seong-Ho Yoon. A Robust Design Process of Exhaust System for Idle Vibration of a Vehicle[C]. SAE Paper, 2007-01-1659.
[12] 钱胜,陆益民. 排气系统吊耳动静态特性分析及结构优化[J]. 噪声与振动控制,2012,(5): 193-197.
QIAN Sheng, LU Yi-min. Static and dynamic characteristic analysis and structures optimization of hangers isolator of exhaust system[J]. Noise and Vibration Control, 2012,(5): 193-197.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}