大型高耸钢筋混凝土冷却塔属于典型的风敏感型结构,近年来在地震、飞机撞击、爆破等极端外部作用下动力响应研究也得到了工程界的广泛关注。土-结构动力相互作用效应(Soil Structure Interaction, SSI)对于大坝、桥梁等类型工程结构地震响应的影响研究成果较为丰富,而对冷却塔结构体系的影响程度方面很少涉及。依据弹性波动理论结合有限单元法,建立和推导了考虑土-结构动力相互作用的三维粘弹性人工边界模型和公式,并通过半空间自由场模型验证该地震动输入方法的准确性。以国内实际工程项目——某火电厂大型冷却塔为研究背景,以通用有限元程序ANSYS为平台,分别建立了冷却塔刚性地基模型、无质量地基模型和粘弹性人工边界模型,开展模态分析及弹性时程分析,研究不同计算模型相应的动力特性及内力变化,探讨了土-结构动力相互作用的影响规律。研究结果表明:考虑刚性地基,冷却塔结构体系自振频率分布十分密集,绝大多数振型为环向谐波和子午向谐波组合的局部振型;考虑弹性地基后,结构的自振频率略有降低,整体振型较早出现。通过时程分析可知,采用粘弹性人工边界模型,考虑无限地基辐射阻尼效应,与刚性地基模型相比,塔筒的绝对加速度最大值降低43.4%,塔筒沿子午向弯矩轴力幅值降低约50%,而环向内力却均显著提高,X支柱内力幅值降低约20%~50%.因此,在进行冷却塔地震响应分析时,土-结构动力相互作用的影响不可忽视。
Abstract
Large-scale high-rise reinforced concrete cooling tower belongs to typical wind-sensitive structure. In recent years, study on dynamic response under extreme external actions, such as earthquake, jet-crash, blasting et. al gets extensive concern in engineering field. Research on earthquake response influence for projects like dams, bridges and so on taking into account soil structure dynamic interaction is relatively abundant, however it is seldom involved in cooling tower. Based on elastic wave motion theory combined with finite element method, 3D viscous-spring artificial boundary model and formula were set up and deduced while considering soil structure dynamic interaction, and verify the accuracy of the earthquake input method through half space free field model. A large cooling tower in coal-fired power plant in domestic engineering project as the research background, based on general program ANSYS platform, cooling tower rigid foundation model, massless foundation model and viscoelastic artificial boundary model were modeled respectively. Modal analysis and elastic time history analysis were performed in order to study dynamic characteristics and changes of internal force, influence law of soil structure dynamic interaction for the different model was discussed. Research results show that the cooling tower structure system natural vibration frequency distribution is very dense, and the vast majority of vibration modes are local coupling vibration mode in ring and meridian directions. The natural vibration frequencies are reduced due to considering elastic foundation, and the whole vibration mode appear earlier. Through time history analysis it can be seen that by using the viscous-spring artificial boundary model, considering the infinite foundation radiation damping effect, compared with the rigid foundation model, the maximum absolute acceleration of tower reduces to 43.4%. Moment and axial force in meridian direction reduces 50%, and in ring direction increases significantly. Internal force amplitude value for X columns reduces about 20%~50%. Therefore, when performed the earthquake response analysis of cooling tower, it cannot be neglected influence of soil structure interaction.
关键词
冷却塔结构 /
地震响应分析 /
土-结构动力相互作用 /
粘弹性人工边界 /
自由场分析 /
地震动输入
{{custom_keyword}} /
Key words
Cooling tower structure /
Earthquake response analysis /
Soil structure dynamic interaction /
Viscous-spring artificial boundary /
Free field analysis /
Earthquake input
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 柯世堂,陈少林,葛耀君等.超大型冷却塔随机地震响应分析[J].地震工程与工程振动,2012,32(6):159-165.
KE Shi-tang, CHEN Shao-lin, GE Yao-jun, et al. Earthquake stochastic response analysis of super large cooling towers [J].Journal of earthquake engineering and engineering vibration, 2012, 32(6): 159-165.
[2]构筑物抗震设计规范(GB50191-2012)[S].中国计划出版社, 2012.
[3] Gupta A K, Schnobrich W C. Seismic analysis and design of hyperbolic cooling towers [J].Nuclear Engineering and design, 1976, 36(2): 251-260.
[4] Wolf J P. Seismic analysis of cooling towers [J].Engineering Structures, 1986, 8(3): 191-198.
[5] Nasir AM, Thambiratnam DP, Butler D, et al. Dynamics of axisymmetric hyperbolic shell structures [J].Thin-Walled Structures, 2002, 40(7-8): 665-690.
[6] Sabouri-Ghomi S, Nik FA, Roufegarinejad A, et al. Numerical study of the nonlinear dynamic behavior of reinforced concrete cooling towers under earthquake excitation [J].Advances in Structural Engineering, 2006, 9(3): 433-442
[7] 叶 浩,李华峰,黄志龙.基于混凝土损伤塑性模型的自然通风冷却塔非线性抗震分析[J].电力建设,2014,35(9):88-92.
YE Hao, LI Hua-feng, HUANG Zhi-long. Nonlinear seismic response of natural draft cooling tower based on concrete damaged plasticity model [J].Electric Power Construction, 2014, 35(9): 88-92.
[8] A.M. Horr, M. Safi. Full dynamic analysis of large concrete cooling towers: soil structure interaction [J].International journal of space structures, 2002, 17 (4): 301–312.
[9] 高 标,卢红前.SSI效应对大型双曲线冷却塔结构抗震性能的影响[J].武汉大学学报(工学版),2009,42(Sup):427-431.
GAO Biao, LU Hong-qian. Influence of SSI effect on aseismic performance of hyperbolic cooling tower [J].Engineering Journal of Wuhan University, 2009, 42(Sup): 427-431.
[10]李 辉,张俊发.超大型冷却塔考虑土—结构相互作用的三维有限元抗震分析[J].长春工程学院学报(自然科学版), 2012,13(4):19-21.
LI Hui, ZHANG Jun-fa. The Three-dimensional finite element seismic analysis to super large cooling tower considering soil-structure interaction [J].Journal of Changchun institute technology, 2012, 13(4): 19-21.
[11]房营光.岩土介质与结构动力相互作用理论及其应用[M].北京:科学出版社,2005.
[12]薛素铎,刘 毅,李雄彦.土-结构动力相互作用研究若干问题综述[J].世界地震工程,2013,29(2):1-9.
XUE Su-duo, LIU Yi, LI Xiong-Yan. Review of some problems about research on soil-structure dynamic interaction [J].World Information on Earthquake Engineering, 2013, 29(2): 1-9.
[13]A.S.Veletsos and Y.T.Wei. Lateral and Rocking vibrations of footings [J].Journal of the soil mechanism and foundations division, ASCE, 1971, 97(1):1227-1248.
[14]J.E.Luco and R.A.Westman. Dynamic response of circular footings [J].Journal of the Engineering mechanism division, ASCE, 1971, 97(1):1381-1395.
[15]贺广零.考虑土-结构相互作用的风力发电高塔系统地震动力响应分析[J].机械工程学报,2009,45(7):87-94.
HE Guang-ling. Seismic response analysis of wind turbine tower systems considering soil-structure interaction [J].Journal of mechanical engineering,2009,45(7): 87-94.
[16]柯世堂,王同光,曹九发等.考虑土—结相互作用大型风力发电结构风致响应分析[J].土木工程学报,2015,48(2):18-25.
KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, et al. Analysis on wind-induced responses of large wind power structures considering soil-structure interaction [J].China civil engineering journal, 2015, 48(2): 18-25.
[17]曹 青,张 豪.考虑土-结构相互作用的风力发电机塔架地震响应分析[J].西北地震学报,2011,33(1):62-66.
CAO Qing, ZHANG Hao. Seismic response analysis of wind turbine tower with soil-structure interaction [J].Northwestern seismological journal, 2011, 33(1): 62-66.
[18]何建涛,马怀发,张伯艳等.黏弹性人工边界地震动输入方法及实现[J].水利学报,2010,41(8):960-969.
HE Jian-tao, MA Huai-fa, ZHANG Bo-yan, et al. Method and realization of seismic motion input of viscous-spring boundary [J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese)
[19]刘晶波,王振宇,杜修力等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J].Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese)
[20] Maria Radwanska,Zenon Waszczyszyn.Buckling analysis of a cooling tower shell with measured and theoretically-modeled imperfections [J].Thin-walled structures, 1995, 23(1): 107-121
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}