传动间隙对汽车驾驶性的影响规律研究

姜丹娜,黄英,郝东浩

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 152-157.

PDF(2028 KB)
PDF(2028 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 152-157.
论文

传动间隙对汽车驾驶性的影响规律研究

  • 姜丹娜,黄英,郝东浩
作者信息 +

A Study of the Driveline gap Influence on Vehicle Drivability

  •   Jiang Danna   Huang Ying  Hao Donghao
Author information +
文章历史 +

摘要

汽车驾驶性的提高是汽车品质提升的一个关键因素,间隙是传动系统中必然存在且对驾驶性存在影响的因素,所以研究间隙对驾驶性的影响规律是非常有必要的。通过建立车辆纵向的低频动力学模型仿真典型驾驶性恶劣工况——Tip-in工况来研究间隙对驾驶性的影响规律。包括不同位置和不同大小的间隙对驾驶性的影响,分析在面向控制的建模时对模型的简化需要注意的问题。进一步的研究了当车辆传动系统存在较大间隙时,采用经典的转矩斜率控制的方法来改善驾驶性时出现的问题。并针对这一问题设计了基于冲击最小的闭环控制器,使汽车驾驶性得到了改善。

Abstract

The improvement of drivability is a key factor to enhance the quality of a car. The gap is an inevitable factor in driveline which has influence on drivability. So it is necessary to study the influence of the gap on drivability. By setting up a low-frequency longitudinal vehicle dynamics model to simulate the tip-in drive condition which has bad drivability, the influence of gap on the car's drivability was studied. It included the impact of clearance gaps at different locations and different gap size on drivability. And it got some useful rules to control-oriented modeling.  Further studies of the problem when the vehicle there is a big gap and using the methods of classical ‘torque slope control’ to improve drivability. In order to solve this problem, a closed-loop controller was designed and the car’s drivability was improved.

关键词

传动间隙 / 汽车驾驶性 / 间隙的位置 / 间隙的大小 / 驾驶性控制

Key words

driveline gap / vehicle drivability / position of the gap / size of the gap / drivability control;

引用本文

导出引用
姜丹娜,黄英,郝东浩. 传动间隙对汽车驾驶性的影响规律研究[J]. 振动与冲击, 2016, 35(24): 152-157
Jiang Danna Huang Ying Hao Donghao . A Study of the Driveline gap Influence on Vehicle Drivability[J]. Journal of Vibration and Shock, 2016, 35(24): 152-157

参考文献

[1]  List H, Schoeggl P. Objective Evaluation of Vehicle Driveability[C]. SAE 980204.
[2]  Mo C Y, Beaumount A J. Active control of drivability [C]. SAE 960046.
[3]  李进, 欧阳明高. 电控柴油机动力系统窜振控制策略研究[J]. 汽车工程, 2006, 28(3): 238-241.
[4]  Mitschke M., Wallentowitz H.汽车动力学[M]. 陈三荫. 北京:清华大学出版社, 2009.
[5]  Karlsson J. Powertrain Modeling and Control for Driveability in Rapid Transients[D]. Sweden: Chalmers University of Technology  Goteborg, 2001.
[6]  Menday M T, Rahnejat H, Ebrahimi M. Clonk: An Onomatopoeic Response in Torsional Impact of Automotive drivelines[J]. Journal of Automobile Engineering, 1999, 213(part D):349-357.
[7]   Templin P, Egardt B. A Powertrain LQR-Torque Compensator with Backlash Handling[J]. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 2011, 66(4): 645-654.
[8]  Rostalski P, Besselmann T, Barić M, et al. A hybrid approach to modelling, control and state estimation of mechanical systems with backlash[J]. International Journal of Control, 2007, 80(11): 1729-1740
[9]  ISO 2631-1:1997(E). Mechanical vibration and shock——Evaluation of human exposure to whole-body vibration-Part 1: General requirement [S].
[10]  Griffin M J. Handbook of human vibration [M]. Academic press, 2012.
[11]  Sorniotti A. Driveline modeling, experimental validation and evaluation of the influence of the different parameters on the overall system dynamics [C]. SAE 2008-01-0632.
[12]  Krenz R A. Vehicle response to throttle tip-in/tip-out[C]. SAE 850967.
[13]  Pacejka H. Tire and vehicle dynamics[M]. Elsevier, 2005.
[14]  Galvagno E, Morina D, Sorniotti A, et al. Drivability analysis of through-the-road-parallel hybrid vehicles[J]. Meccanica, 2013, 48(2): 351-366.
[15]  Holdstock T, Sorniotti A, Suryanto N A, et al. Linear and non-linear methods to analyse the drivability of a through-the-road parallel hybrid electric vehicle[J]. International Journal of Powertrains, 2013, 2(1):52-77.
[16]  Fan J., Theoretische und experimentelle Untersuchungen zu Langsschwingungen von Pkw(Ruckeln)[M] Aachen:Verlag Shaker, 1994.

PDF(2028 KB)

623

Accesses

0

Citation

Detail

段落导航
相关文章

/