基于时域流形稀疏重构方法的滚动轴承故障特征增强研究

张文清1,2,何清波1,丁晓喜1,韩杰2,谢明伟2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 189-195.

PDF(2356 KB)
PDF(2356 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 189-195.
论文

基于时域流形稀疏重构方法的滚动轴承故障特征增强研究

  • 张文清1,2,何清波1,丁晓喜1,韩杰2,谢明伟2
作者信息 +

Rolling Element Bearing Fault Signature EnhancementBased on Time-Domain ManifoldSparse Reconstruction Method

  • ZHANG Wenqing1,2,HE Qingbo1,DING Xiaoxi1,HAN Jie2,XIE Mingwei2
Author information +
文章历史 +

摘要

振动信号降噪处理一直是滚动轴承故障诊断中的一个重要的研究内容。本文利用时域流形和匹配追踪的优点,克服两种方法的不足,提出一种优势互补的新方法——时域流形稀疏重构方法。时域流形具有良好的去噪能力,却由于其非线性的处理过程导致振幅信息不能保持。匹配追踪方法的降噪能力与原子本身有关,由于不能保证选取到最能表征信号的原子,故其降噪能力具有局限性。本文提出的方法克服了上述问题。首先通过匹配追踪的方法以时域流形结果为基础从一个过完备字典中找到最匹配的原子,之后以得到的原子与原始信号匹配计算获得重构的稀疏系数,最后通过稀疏系数和得到的原子重构信号,该结果同时具有匹配追踪和时域流形的优点。本文以轴承故障信号分析为例,验证了本方法的有效性。同时和时域流形及匹配追踪方法相比较,结果显示本方法具有明显的优越性。

Abstract

Vibration signaldenoisinghas been one of the most important tasks in signal processing for rolling element bearing fault diagnosis. This paper proposes a new method named time-domain manifold sparse reconstruction method by combining the advantages of time-domain manifold (TM) and matching pursuit (MP). The TM shows the merits of noise suppression and fault information enhancement but it can’t maintain the amplitude information of the signal due to its nonlinear processing. The ability of denoising for the MP is related to the atomitself.Because of the inability to ensure that the selected atoms are the most suitable,the ability of the noise reduction is limited.The method proposed by this paper overcomes these problems. Firstly, we find the most appropriate atoms from an overcomplete dictionary based on the TM result by the MP method. Secondly, we compute the coefficients from the atoms and the origianl signal. Finally, we reconstruct the signal by the atoms and the coefficients achieved before. The proposed method has been employed to deal with defective bearing signals to verify the effectiveness. The results show that the new method is superior to the TM and the MP.

关键词

时域流形 / 匹配追踪 / 稀疏重构 / 滚动轴承故障诊断

引用本文

导出引用
张文清1,2,何清波1,丁晓喜1,韩杰2,谢明伟2. 基于时域流形稀疏重构方法的滚动轴承故障特征增强研究[J]. 振动与冲击, 2016, 35(24): 189-195
ZHANG Wenqing1,2,HE Qingbo1,DING Xiaoxi1,HAN Jie2,XIE Mingwei2. Rolling Element Bearing Fault Signature EnhancementBased on Time-Domain ManifoldSparse Reconstruction Method[J]. Journal of Vibration and Shock, 2016, 35(24): 189-195

参考文献

[1] R. Li and D. He, “Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification,” IEEE Trans. Instrum. Meas,vol. 61, no. 4,pp. 990–1001, 2012.
[2] Q. He, Y. Liu, and F. Kong, “Machine fault signature analysis by midpoint-based empirical mode decomposition,” Meas. Sci. Tech.,vol. 22, no. 1,pp. 015702, 2011.
[3] P. Daponte, G. Fazio, and A. Molinaro, “Detection of echoes using time-frequency analysis techniques,”IEEE Trans. Instrum. Meas., vol. 45, no. 1, pp. 30–40, 1996.
[4] Y. J. Shin, E. J. Powers, T. S. Choe, C. Y. Hong, E. S. Song, J. G. Yook, and J. B. Park, “Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable,” IEEE Trans. Instrum. Meas., vol. 54, no. 6, pp. 2493–2500, 2005.
[5] M. Ahron, M. Elad, and A. M. Bruckstein, “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 4311–4322, 2006.
[6] L. Cui, J. Wang, Seungchul Lee. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis. Journal of Sound and Vibration 333 (2014), pp. 2840–2862.
[7] J. Ma. Improved Iterative Curvelet Thresholding for Compressed Sensing and Measurement. Instrumentation and Measurement, IEEE Transactions on, 60 (1), pp. 126-136.
[8] S. Mallat, Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12) (1993), pp. 3397–3415.
[9] B. Liu, S. Ling, and R. Gribonval, “Bearing failure detection using matching pursuit,” NDT&E Int., vol. 35, no. 4, pp. 255–262, 2002.
[10] G. Gelle, M. Colas, and G. Delaunay,  “Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis,” Mech. Syst. Signal Process., vol. 14, no. 3, pp. 427–442, 2000.
[11] R.R. Coifman, M.V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory. 38 (1992), pp. 713–718.
[12] S.S.Chen, D.L. Donoho, M.A. Saunders. Atomic decomposition by basis pursuit. SIAM Review. 43 (1) (2001), pp. 129–159.
[13] 阳建宏,徐金梧,杨德斌,黎敏.基于主流形识别的非线性时间序列降噪方法及在故障诊断中的应用[J].机械工程学报,2006,42(8):154-158.
J. Yang, J. Xu, D. Yang, M. Li. Noise reduction method for nonlinear time series based on principal manifold learning and its application to fault diagnosis.Chinese Journal of Mechanical Engineering 42(8) (2006),pp.154-158.
[14] Q. He, Y. Liu, Q. Long, J. Wang. Time-frequency manifold as a signature for machine health diagnosis. Instrumentation and Measurement, IEEE Transactions on. 61(5), pp. 1218–1230.2012
[15] Q. He, X. Wang, and Q. Zhou, “Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis,” Sensors,vol. 14, pp. 382–402, 2014.
[16] Q. He. Time-frequency manifold for nonlinear feature extraction in machinery fault diagnosis. Mechanical Systems and Signal Processing 35 (2) (2013), pp. 200–218.
[17] 何清波,丁晓喜,王俊.旋转机械故障时频流形诊断分析研究[J].振动与冲击,2014,33(S):302-304.
Q. He, X. Ding, J. Wang. Rotating machine fault diagnosis by time-frequency manifold analysis. Journal of Vibration and Shock 33 (S) (2014), pp.302-304.
[18] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment”, SIAM J. Sci. Comput., vol. 26, no. 1, pp. 313–338, 2005.
[19] 杨庆,陈桂明,江良洲,何庆飞. 带标志点的LTSA算法及其在轴承故障诊断中的应用[J].振动工程学报,2012,25(6):732-738.
Q. Yang,G. Chen,L. Jiang,Q. He, “Local tangent space alignment algorithm based on selecting landmark points and its application in fault diagnosis for rolling bearing”, Journal of Vibration Engineering25(6)(2012),pp.732-738.
[20] 栗茂林, 王孙安, 梁霖.利用非线性流形学习的轴承早期故障特征提取方法[J]. 西安交通大学学报,2010,44(5):45-49.
M. Li, S. Wang, L. Liang, “Feature Extraction for Incipient Fault Diagnosis of Rolling Bearings Based on Nonlinear Manifold Learning”,Journal of Xi’an Jiaotong University,44(5)(2010), PP.45-49
[21] 孙斌,刘立远,牛翀. 基于局部切空间排列和K-最近邻分类器的转子故障诊断方法[J].中国机械工程,2015,26(1):74-78.
B. Sun, L. Liu, C. Niu.“Rotor Fault Diagnosis Methods Based on Local Tangent Space Alignment and K-Nearest Neighbor”,China Mechanical Engineering ,26(1)(2015),pp.74-78.

PDF(2356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/