土体-结构非线性耦合系统动力响应并行计算方法研究

王小庆1,2,金先龙1,2,王建炜2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 19-26.

PDF(2076 KB)
PDF(2076 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 19-26.
论文

土体-结构非线性耦合系统动力响应并行计算方法研究

  • 王小庆1,2,金先龙1,2,王建炜2
作者信息 +

Study on parallel computing method for dynamic response analysis of soil-structure nonlinear interaction system

  • WANG Xiao-qing1,2,JIN Xian-long1,2,WANG Jian-wei2
Author information +
文章历史 +

摘要

针对土体-结构非线性耦合(Soil-Structure Interaction,简称SSI)系统动力响应数值模拟带来的大规模计算量问题,提出基于SSI负载均衡及对偶图理论两种区域分解算法的并行计算方法。结合传统的贪婪法及递归坐标对分方法,对这四种方法的并行性能进行研究。SSI采用基于对称罚函数的方法处理,系统方程采用显式中心差分有限元方法求解。对典型的SSI工程问题动力响应进行并行数值模拟,并对这四种方法的可扩展性进行分析。结果表明:基于SSI负载均衡的并行计算方法,充分考虑土体和结构耦合负载的均衡,并行效率最优,基于对偶图理论区域分解的方法和递归坐标对分方法效率次之,贪婪法并行效率最低;随核数增加,并行效率下降,需根据实际模型规模合理选择并行计算核数,获得最优的并行计算效益;基于罚函数的显式有限元方法能够较好的解决SSI动力响应问题。

Abstract

In order to solve the problem of massive amount of computation brought by the numerical dynamic response simulation of soil-structure nonlinear interaction (SSI) system, the parallel computing method using SSI load balanced and dual-graph theory based domain decomposition (DD) algorithm is proposed. Combined with traditional greedy and recursive coordinate bisection algorithm, the parallel performance of these four algorithms is researched. The SSI is dealt with symmetric penalty method. The system equation is solved using finite element method (FEM) with explicit central difference scheme. The dynamic responses of typical engineering problems with SSI are simulated in parallel, and the scalability of these four algorithms is analyzed. The results indicate that the SSI load balanced algorithm which substantially balances the coupling loads of soil and structure shows the best parallel efficiency, followed by dual-graph theory based algorithm and recursive coordinate bisection algorithm, and the greedy method get the lowest parallel efficiency; the parallel efficiency decreases with the increasing cores, and the number of cores should be chosen properly according to the scale of the actual model to achieve the optimal parallel performance; the explicit FEM with penalty method is a proper approach for SSI dynamic analysis.

 

关键词

结构-土体非线性耦合 / 区域分解 / 并行计算 / 动力响应 / 显式有限元 / 对称罚函数法

Key words

soil-structure nonlinear interaction;domain decomposition / parallel computing / dynamic response / explicit FEM / symmetric penalty method

引用本文

导出引用
王小庆1,2,金先龙1,2,王建炜2. 土体-结构非线性耦合系统动力响应并行计算方法研究[J]. 振动与冲击, 2016, 35(24): 19-26
WANG Xiao-qing1,2,JIN Xian-long1,2,WANG Jian-wei2. Study on parallel computing method for dynamic response analysis of soil-structure nonlinear interaction system[J]. Journal of Vibration and Shock, 2016, 35(24): 19-26

参考文献

[1] Lou M, Wang H, Chen X, Zhai Y. Structure–soil–structure interaction:literature review[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(12): 1724-1731.
[2] 刘毅, 薛素铎, 李雄彦. 土-结构相互作用下网架结构动力性能研究[J]. 振动与冲击, 2014, 33(10): 22-28.
LIUYi, XUESu-duo, LI Xiong-yan. Grid structure dynamic performance analysis considering soil-structure interaction [J]. Journal of Vibration and Shock, 2014, 33(10): 22-28.
[3] Vasilev G, Parvanova S, Dineva P, Wuttke F. Soil-structure interaction using BEM–FEM coupling through ANSYS software package[J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 104-117.
[4] Yerli H R, Kacin S, Kocak S. A parallel finite–infinite element model for two-dimensional soil–structure interaction problems[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(4): 249-253.
[5] Genes M C, Kocak S. A combined finite element based soil–structure interaction model for large-scale systems and applications on parallel platforms[J]. Engineering structures, 2002, 24(9): 1119-1131.
[6] Genes M C. Dynamic analysis of large-scale SSI systems for layered unbounded media via a parallelized coupled finite-element/ boundary-element/scaled boundary finite- element model[J]. Engineering analysis with boundary elements, 2012, 36(5): 845-857.
[7] Meschke G, Ninić J, Stascheit J, Alsahly A. Parallelized computational modeling of pile–soil interactions in mechanized tunneling[J]. Engineering Structures, 2013, 47: 35-44.
[8] 邹立华, 方雷庆. 考虑桩-土-结构相互作用的结构振动控制研究[J]. 振动与冲击, 2010, 29(11): 100-104.
ZOU Li-hua, FangLei-qing. Structural vibration control considering pile-soil-structure dynamic interaction[J]. Journal of Vibration and Shock, 2010, 29(11): 100-104.
[9] Abate G, Massimino M R, Maugeri M. Numerical modelling of centrifuge tests on tunnel–soil systems[J]. Bulletin of Earthquake Engineering, 2014: 1-25.
[10] Lee J H, Kim J K, Kim J H. Nonlinear analysis of soil–structure interaction using perfectly matched discrete layers[J]. Computers & Structures, 2014, 142: 28-44.
[11] 张巍, 陈清军. 土-桩-结构非线性相互作用体系行波效应的并行计算分析[J]. 湖南大学学报: 自然科学版, 2012, 39(6): 19-25.
ZHANG Wei,CHEN Qing-jun. Parallel computing analysis of the traveling wave effect of soil-pile-structure nonlinear interaction system Finite element analysis of three-dimensional soil-structure interactionsystem[J]. Journal of Hunan University(Natural Sciences),2012, 39(6): 19-25.
[12] Li P, Song E. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input[J]. Computers and Geotechnics, 2015, 63: 229-243.
[13] Ding J H, Jin X L, Guo Y Z, Li G G. Numerical simulation for large-scale seismic response analysis of immersed tunnel[J]. Engineering structures, 2006, 28(10): 1367-1377.
[14] Krysl P, Bittnar Z. Parallel explicit finite element solid dynamics with domain decomposition and message passing: dual partitioning scalability[J]. Computers & Structures, 2001, 79(3): 345-360.
[15] Farhat C. A simple and efficient automatic FEM domain decomposer[J]. Computers & Structures, 1988, 28(5): 579-602.
[16] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs[J]. SIAM Journal on scientific Computing, 1998, 20(1): 359-392.

PDF(2076 KB)

Accesses

Citation

Detail

段落导航
相关文章

/