材料物性热效应对统计能量分析参数的影响

张 鹏1,2,费庆国1,2,李彦斌1,2,吴邵庆1,2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 73-78.

PDF(1413 KB)
PDF(1413 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 73-78.
论文

材料物性热效应对统计能量分析参数的影响

  • 张  鹏1,2,费庆国1,2,李彦斌1,2,吴邵庆1,2
作者信息 +

Effect of temperature-dependent material property on the statistical energy analysis parameters

  • ZHANG Peng1,2 , FEI Qing-guo1,2 ,LI Yan-bin1,2 , WU Shao-qing1,2
Author information +
文章历史 +

摘要

高温环境会引起系统的统计能量分析参数发生变化,原因之一是温度改变了材料物性。为建立计及材料物性热效应的统计能量分析模型,有必要先研究材料物性热效应对统计能量分析参数的影响。针对四周简支的L形折板结构,在一板上施加雨流载荷(rain-on-the-roof),计及材料物性热效应,基于能量流模型分析得到子结构不同温度下对应于特定模态群的载荷的平均输入功率及各子系统的平均振动能量,再基于PIM理论分析得到由内损耗因子、耦合损耗因子与频带中心频率的乘积定义的参数:内损耗系数、耦合损耗系数。研究结果表明:整体模态密度、雨流载荷的平均输入功率与板材面内弹模随温度的变化趋势相反;内损耗系数、耦合损耗系数与板材面内弹模随温度的变化趋势相同。

Abstract

The environment temperature changes the material property and then the statistical energy analysis (SEA) parameters. It is necessary to study the effect of temperature-dependent material property on the SEA parameters before the establishment of a SEA model with the consideration of temperature. Firstly, the model of an L-shaped plate was created, which is simple supported at all sides. Secondly, the rain-on-the-roof load was applied on one plate of the L-shaped plate, and the frequency-averaged input power of load as well as the vibration energy of each sub-system at different temperatures corresponding to different mode sets were obtained based on the energy flow models. The effect of temperature-dependent material property is considered. Finally, the damping loss coefficient and coupling loss coefficient are defined by the product of the central frequency and the damping loss factor/coupling loss factor, respectively, were obtained based on the power injection method. Results show that the global modal density and the frequency-averaged input power of the rain-on-the-roof load are changing with the temperature and they have the contrary trend with the elastic modulus of L-shaped plate verse temperature; the damping loss coefficients and coupling loss coefficients are changing with the temperature and they have the same trend with the elastic modulus of L-shaped plate verse temperature.

关键词

统计能量分析 / 温度效应 / 耦合损耗因子 / 功率流入射法 / 能量流模型

Key words

statistical energy analysis / temperature effect / coupling loss factor / power injection method / the energy flow models

引用本文

导出引用
张 鹏1,2,费庆国1,2,李彦斌1,2,吴邵庆1,2. 材料物性热效应对统计能量分析参数的影响[J]. 振动与冲击, 2016, 35(24): 73-78
ZHANG Peng1,2,FEI Qing-guo1,2,LI Yan-bin1,2,WU Shao-qing1,2. Effect of temperature-dependent material property on the statistical energy analysis parameters[J]. Journal of Vibration and Shock, 2016, 35(24): 73-78

参考文献

[1] Lyon R H, Maidanik G. Power flow between linearly coupled oscillators[J]. The Journal of the Acoustical Society of America, 1962, 34(5): 623-639.
[2] Smith Jr P W. Coupling of sound and panel vibration below the critical frequency[J]. The Journal of the Acoustical Society of America, 1964, 36(8): 1516-1520.
[3] Lyon R H, DeJong R G, Heckl M. Theory and application of statistical energy analysis[M]. Acoustical Society of America Journal, 1995, 98: 3021.
[4] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社, 1995.
YAO De-yuan, WANG Qi-zheng. Theory and application of statistical energy analysis[M]. Beijing: Beijing Institute of Technology Press, 1995.
[5] Xie G, Thompson D J, Jones C J C. Mode count and modal density of structural systems: relationships with boundary conditions[J]. Journal of Sound and Vibration, 2004, 274(3): 621-651.
[6] Ungar E E, Kerwin Jr E M. Loss factors of viscoelastic systems in terms of energy concepts[J]. The Journal of the acoustical Society of America, 2005, 34(7): 954-957.
[7] Souf B, Bareille O, Ichchou M N, et al. Variability of coupling loss factors through a wave finite element technique[J]. Journal of Sound and Vibration, 2013, 332(9): 2179-2190.
[8] D'Amico R, Koo K, Huybrechs D, et al. On the use of the residue theorem for the efficient evaluation of band-averaged input power into linear second-order dynamic systems[J]. Journal of Sound and Vibration, 2013, 332(26): 7205-7225.
[9] Pankaj A C, Sastry S, Murigendrappa S M. A comparison of different methods for determination of coupling factor and velocity response of coupled plates[J]. Journal of Vibroengineering, 2013, 15(4): 1885-1897.
[10] Ji L, Huang Z Y. A Simple Statistical Energy Analysis Technique on Modeling Continuous Coupling Interfaces[J]. Journal of Vibration and Acoustics, 2014, 136(1).
[11] Le Bot A, Cotoni V. Validity diagrams of statistical energy analysis[J]. Journal of sound and vibration, 2010, 329(2): 221-235.
[12] Bies D A, Hamid S. In situ determination of loss and coupling loss factors by the power injection method[J]. Journal of Sound and Vibration, 1980, 70(2): 187-204.
[13] 李湘南, 林哲. 船舶机械设备联接处非保守耦合损耗因子的研究[J]. 振动与冲击, 2006, 24(4): 89-91.
LI Xian-gnan, LIN Zhe. Study on non-conservatively coupled loss factor of joints between ship mechanic equipment. Journal of Vibration and Shock, 2006, 24(4): 89-91.
[14] 盛美萍, 王敏庆. 直接和间接耦合损耗因子的计算方法[J]. 噪声与振动控制, 1997 (6): 2-7.
SHENG Mei-ping, WANG Min-qing. The calculation method of direct and indirect coupling loss factor[J]. Noise and Vibration Control, 1997 (6): 2-7.
[15] 孟松鹤, 丁小恒, 易法军, 等. 高超声速飞行器表面测热技术综述[J]. 航空学报, 2014, 35(7): 1759-1775.
MENG Song-he, DING Xiao-heng, YI Fa-jun, et al. Overview of heat measurement technology for hypersonic vehicle surface[J]. Acta Aeronautica Et Astronautica Sinica, 2014, 35(7): 1759-1775.
[16] 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
YANG Chao, XU Yun, XIE Chang-chuan. Review of Studies on Aeroelasticity of Hypersonic Vehicles[J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(1): 1-11.
[17] 杨雄伟, 李跃明, 闫桂荣. 考虑材料物性热效应飞行器声振耦合动态特性分析[J]. 固体力学学报, 2010, 31(S):134-142.
YANG Xiong-wei, LI Yue-ming, YAN Gui-rong. Vibro-acoustic Dynamic analysis of aircraft with temperature-dependent material property[J]. Chinese Journal of Solid Mechanics, 2010: 31(S):134-142.
[18] 李彦斌, 张鹏, 吴邵庆, 费庆国. 复合材料加筋板计及热效应的声-固耦合分析[J]. 振动工程学报, 2015, 28(4): 531-540.
LI Yan-bin, ZHANG Peng, WU Shao-qing, FEI Qing-guo. Structural-acoustic coupling analysis of a composite stiffened panel in a thermal environment[J]. Journal of Vibration Engineering, 2015, 28(4): 531-540.
[19] Mace B R, Shorter P J. Energy flow models from finite element analysis[J]. Journal of Sound and Vibration, 2000, 233(3): 369-389.
 

PDF(1413 KB)

525

Accesses

0

Citation

Detail

段落导航
相关文章

/