航天器刚柔耦合动力学建模及热诱发动力学响应分析

孙述鹏,王伟,段枭

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 79-83.

PDF(1383 KB)
PDF(1383 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 79-83.
论文

航天器刚柔耦合动力学建模及热诱发动力学响应分析

  • 孙述鹏,王伟,段枭
作者信息 +

Rigid-flexible coupling dynamic modelling and thermally induced vibration analysis for a flexible spacecraft

  • SUN Shu-peng, WANG Wei, DUAN Xiao
Author information +
文章历史 +

摘要

针对带大型太阳能帆板的航天器,使用蜂窝板对太阳能帆板进行建模,利用哈密顿原理建立了航天器刚柔耦合动力学方程,分析了刚柔耦合非线性项及系统参数对航天器固有特性和热诱发动力学响应的影响。结果表明,系统频率随中心刚体转动惯量减小而升高,存在特定的蜂窝芯层与蜂窝板厚度比值,使系统频率最高;系统刚柔耦合非线性项不影响热诱发动力学响应中的准静态位移分量,但会使热诱发振动分量的振幅增大,振动频率发生偏移;当系统热特征时间常数的倒数和系统基频接近时,热诱发振动幅值最大。研究结果对航天器参数设计提供了理论指导。

Abstract

The rigid-flexible coupling dynamic model for a flexible spacecraft with large solar panels which are modeled by honeycomb panels is established by using the Hamiltonian principle. The effects of rigid-flexible coupling nonlinear terms in the dynamic model and the parameters of the flexible spacecraft on the natural characteristics and thermally induced vibration of the system are investigated. The numeric simulation results show that the frequencies of the system increase as the moment of inertia for the rigid hub of the flexible spacecraft decrease, and there is a particular  honeycomb core height to solar panel thickness ratio such that the frequency taking the maximum. The rigid-flexible coupling nonlinear terms do not affect the quasi-static part of the thermally induced response of the flexible spacecraft. However, they make the amplitude of vibration part increase and the system frequency change. When the reciprocal of the thermal time constant of the system is close to the fundamental frequency, the amplitude of thermally induced vibration is maximum. The conclusions provided theoretical guidance for the spacecraft design.

关键词

热诱发振动 / 太阳能帆板 / 刚柔耦合 / 蜂窝板 / 柔性航天器

Key words

 thermally induced vibration / solar panel / rigid-flexible coupling / honeycomb panel / flexible spacecraft

引用本文

导出引用
孙述鹏,王伟,段枭. 航天器刚柔耦合动力学建模及热诱发动力学响应分析[J]. 振动与冲击, 2016, 35(24): 79-83
SUN Shu-peng, WANG Wei, DUAN Xiao. Rigid-flexible coupling dynamic modelling and thermally induced vibration analysis for a flexible spacecraft[J]. Journal of Vibration and Shock, 2016, 35(24): 79-83

参考文献

[1] Johnston J D, Thornton E A. Thermally induced dynamics of satellite solar panels[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 604-613.
[2] Boley B A. Thermally induced vibrations of beams[J]. Journal of the Aeronautical Science, 1956, 23(2): 179-181.
[3] Thornton E A, Kim Y A. Thermally induced bending vibrations of a flexible rolled-up solar array[J]. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448.
[4] 程乐锦, 薛明德. 大型空间结构热-动力学耦合有限元分析[J]. 清华大学学报:自然科学版, 2004, 44(5): 681-684.
CHENG Le-jin, XUE Ming-de. Coupled thermal-dynamic FEM analysis of large scale space structures [J]. Journal of Tsinghua University (Science & Technology), 2004, 44(5): 681-448.
[5] 孔祥宏, 王志瑾. 空间站柔性太阳翼热诱发振动分析[J]. 振动与冲击, 2015, 34(5): 220-227.
KONG Xiang-hong, WANG Zhi-jin. Thermally induced vibration analysis of a space station's flexible solar wing [J]. Journal of Vibration and Shock, 2015, 34(5): 220-227.
[6] 孔祥宏, 王志瑾. 空间站柔性太阳翼桅杆热诱发振动分析[J]. 上海交通大学学报, 2014, 48(8): 1103-1108.
KONG Xiang-hong, WANG Zhi-jin. Thermally induced vibration of the flexible solar wing of the mast of space station [J]. Journal of Shanghai Jiaotong University, 2014, 48(8): 1103-1108.
[7] Johnston J D, Thornton E A. Thermally Induced Attitude Dynamics of a Spacecraft with a Flexible Appendage[J]. Journal of Guidance Control & Dynamics, 1998, 21(4): 581-587.
[8] Li L, Yuan J. Analysis and modeling of spacecraft with flexible solar panel disturbed by thermally induced motion[C].Proceedings of the Control Conference (CCC), 2014 33rd Chinese, 2014: 6382-6387.
[9] 李伟, 薛明德, 向志海. 刚体-附件耦合系统热-动力学稳定性分析[J]. 浙江大学学报:工学版, 2009, 43(7): 1288-1292.
LI Wei, XUE Ming-de, XIANG Zhi-hai. Thermal-dynamic stability analysis of structural appendages attached to satellite [J]. Journal of Zhejiang University (Engineering Science), 2009, 43(7): 1288-1292.
[10] Li J, Yan S. Thermally induced vibration of composite solar array with honeycomb panels in low earth orbit[J]. Applied Thermal Engineering, 2014, 71(1): 419-432.
[11] Gasbarri P, Monti R, Sabatini M. Very large space structures: Non-linear control and robustness to structural uncertainties[J]. Acta Astronautica, 2014, 93(1): 252-265.
[12] Li J, Yan S, Cai R. Thermal analysis of composite solar array subjected to space heat flux[J]. Aerospace Science and Technology, 2013, 27(1): 84-94.
[13] 夏利娟, 金咸定, 汪庠宝. 卫星结构蜂窝夹层板的等效计算[J]. 上海交通大学学报, 2003, 37(7): 999-1001.
XIA Li-juan, JIN Xian-ding, WANG Yang-bao. Equivalent analysis of honeycomb sandwich plates for satellite structure [J]. Journal of Shanghai Jiaotong University, 2003, 37(7): 999-1001.
[14] 孔宪仁, 杨正贤, 张锦绣, et al. 刚柔耦合系统的输入成形控制[J]. 哈尔滨工业大学学报, 2011, 43(3): 7-11.
KONG Xian-ren, YANG Zheng-xian, ZHANG Jin-xiu, et al. Input shaping control for rigid-flexible coupling systems [J]. Journal of Harbin Institute of Technology, 2011, 43(3): 7-11.
[15] Yu S D, Cleghorn W L. Free flexural vibration analysis of symmetric honeycomb panels[J]. Journal of Sound and Vibration, 2005, 284(1): 189-204.
 

PDF(1383 KB)

Accesses

Citation

Detail

段落导航
相关文章

/