分数阶PID控制对单自由度线性振子的影响

牛江川,申永军,杨绍普,李素娟

振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 88-95.

PDF(1311 KB)
PDF(1311 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (24) : 88-95.
论文

分数阶PID控制对单自由度线性振子的影响

  • 牛江川,申永军,杨绍普,李素娟
作者信息 +

Effect of fractional-order PID Controller on the dynamical response of linear single degree-of-freedom oscillator

  •   NIU Jiang-Chuan  SHEN Yong-Jun  YANG Shao-Pu  LI Su-Juan
Author information +
文章历史 +

摘要

研究了基于速度反馈分数阶PID控制的单自由度线性振子的自由振动,利用平均法得到了系统的近似解析解。研究发现分数阶PID控制的比例环节以等效线性阻尼的形式影响系统的振幅,积分环节以等效线性阻尼和等效线性刚度的形式影响系统的动力学特性,微分环节以等效线性阻尼和等效线性负刚度的形式影响系统的动力学特性。对近似解析解和数值解进行了比较,二者吻合良好,验证了求解过程和近似解析解的正确性。通过系统响应的性能指标分析了分数阶PID控制的比例系数、积分环节系数、微分环节系数以及分数阶阶次变化时,对系统控制性能的影响。最后,通过单自由度1/4车辆悬架模型的控制实例,证实了基于速度反馈分数阶PID控制的优越性。

Abstract

The free vibration of a linear single degree-of-freedom (SDOF) oscillator with fractional-order PID controller of velocity feedback is investigated by the averaging method, and the approximately analytical solution is obtained. The effects of the parameters in fractional PID controller on the dynamical properties are characterized. The proportional component of fractional-order PID controller is characterized in the form of equivalent linear damping. The integral component of fractional-order PID controller is characterized in the form of equivalent linear damping and the equivalent linear stiffness. The differential component of fractional-order PID controller is characterized in the form of equivalent linear damping and the equivalent linear negative stiffness. Those equivalent parameters could distinctly illustrate the effects of the parameters in fractional PID controller on the dynamical response. A comparison of the analytical solution with the numerical results is made, and their satisfactory agreement verifies the correctness of the approximately analytical results. The effects on system control performance of the coefficients and the orders in fractional-order PID controller are analyzed by time response performance metrics parameters. Finally, the superiority of the fractional-order PID controller based on velocity feedback is demonstrated through the control of a SDOF quarter vehicle suspension model.

关键词

分数阶PID控制 / 平均法 / 近似解析解

Key words

fractional-order PID control / averaging method / approximately analytical solution

引用本文

导出引用
牛江川,申永军,杨绍普,李素娟. 分数阶PID控制对单自由度线性振子的影响[J]. 振动与冲击, 2016, 35(24): 88-95
NIU Jiang-Chuan SHEN Yong-Jun YANG Shao-Pu LI Su-Juan. Effect of fractional-order PID Controller on the dynamical response of linear single degree-of-freedom oscillator[J]. Journal of Vibration and Shock, 2016, 35(24): 88-95

参考文献

[1] Petras I. Fractional-Order Nonlinear Systems [M]. Higher Education Press, Beijing, 2011.
[2] Podlubny I. Fractional Differential Equations [M]. Academic Press, New York, 1999.
[3] Shen Y J, Yang S P, Xing H J, Gao G S. Primary resonance of Duffing oscillator with fractional-order derivative [J]. Communication in Nonlinear Science and Numerical Simulation, 2012, 17(7): 3092-3100.
[4] Rossikhin Y A, Shitikova M V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems [J], Acta Mechanica, 1997, 120(1-4): 109-125.
[5] Yang S P, Shen Y J. Recent advances in dynamics and control of hysteretic nonlinear systems [J].Chaos Solitons and Fractals, 2009, 40(4): 1808-1822.
[6] Chen J H, Chen W C. Chaotic dynamics of the fractionally damped van der Pol equation [J]. Chaos, Solitons and Fractals, 2008, 35(1): 188-198.
[7] 张成芬,高金峰,徐磊. 分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J].物理学报, 2007, 56(9): 5124-5130.
ZHANG Cheng-fen, GAO Jin-feng, XU Lei. Chaos in fractional-order Liu system and a fractional-order unified system and the synchronization between them [J]. Acta Physica Sinica, 2007, 56(9): 5124-5130.
[8] 吴光强,黄焕军,叶光湖. 基于分数阶微积分的汽车空气悬架半主动控制[J]. 农业机械学报, 2014, 45(7): 19-24.
WU Guang-qiang, HUANG Huan-jun, YE Guang-hu. Semi-active Control of Automotive Air Suspension Based on Fractional Calculus [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 19-24.
[9] 孙会来,金纯,张文明,等. 基于分数阶微积分的油气悬架建模与试验分析[J]. 振动与冲击, 2014, 33(17): 167-172.
SUN Hui-lai, JIN Chun, ZHANG Wen-ming, et al. Modeling and tests for a hydro-pneumatic suspension based on fractional calculus [J]. Journal of Vibration and Shock, 2014, 33(17): 167-172.
[10] Podlubny I. Fractional-order systems and PIλDμ–controllers [J]. IEEE Transactions on Automatic Control, 1999, 44 (1): 208-214.
[11] 柳向斌,曲晓丽. 分数阶控制系统稳定性分析[J]. 河南科技大学学报, 2007, 28(2): 33-36.
LIU Xiang-bin, QU Xiao-li. Stability Analysis of Fractional Order Control Systems [J]. Journal of Henan University of Science & Technology, 2007, 28(2): 33-36.
[12] 严慧,于盛林,李远禄. 分数阶PIλDμ控制器参数设计方法—极点阶数搜索法[J].信息与控制, 2007, (4): 445 -450.
   YAN Hui, YU Sheng-lin, LI Yuan-lu. A Design Method of the Parameters of Fractional-order PIλDμController-Poles-Orders Searching Method [J]. Information and Control, 2007, (4): 445-450.
[13] Chen Y Q, Petras I, Xue D Y. Fractional Order Control – A Tutorial [C], 2009 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10-12, 2009.
[14] 薛定宇,赵春娜. 分数阶系统的分数阶PID控制器设计[J]. 控制理论与应用, 2007, 24(5): 771-775.
XUE Ding-yu, ZHAO Chun-na. Fractional order PID controller design for fractional order system [J]. Control Theory & Applications, 2007, 24(5): 771-775.
[15] 黄丽莲,周晓亮,项建弘. 分数阶PID控制器参数的自适应设计[J]. 系统工程与电子技术, 2013, 35(5): 1064-1068.
HUANG Li-lian, ZHOU Xiao-liang, XIANG Jian-hong. Self-adjusting design on parameters of the fractional order PID controller [J]. Systems Engineering and Electronics, 2013, 35(5): 1064-1068.
[16] Ostalczyk P W, Duch P, Brzeziski D W, et al. Order functions selection in the variable, fractional-order PID controller [J]. Lecture Notes in Electrical Engineer ing, 2015, 320, 159-170.
[17] Chen L C, Zhu W Q. Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations [J].  International Journal of Non-Linear Mechanics, 2011, 46(10): 1324-1329.
[18] Chen L C, Li Z S, Zhuang Q J, Zhu W Q. First-passage failure of single-degree-of-freedom nonlinear oscillators with fractional derivative [J]. Journal of Vibration and Control, 2013, 19(14): 2154-2163.
[19] Li C P, Deng W H. Remarks on fractional derivatives [J]. Applied Mathematics and Computation,2007,187(1): 777-784.
[20] 曹建雄,丁恒飞,李常品. 分数阶扩散方程的隐差分格式[J]. 应用数学与计算数学学报, 2013, 27(1): 61-74.
CAO Jian-xiong, DING Heng-fei, LI Chang-pin. Implicit difference schemes for fractional diffusion equations [J]. Communicatin on Applied Mathematics and Computation, 2013, 27(1): 61-74.
[21] Sanders J A, Verhulst F, Murdock J. Averaging Methods in Nonlinear Dynamical Systems[M]. Springer, New York, 2007.
[22] 申永军,杨绍普,邢海军. 含分数阶微分的线性单自由度振子的动力学分析[J]. 物理学报, 2012, 61(11): 110505.
SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative [J]. Acta Physica Sinica, 2012, 61(11): 110505.
[23] 申永军,杨绍普,邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ) [J]. 物理学报, 2012, 61(15): 110503.
SHEN Yong-jun, YANG Shao-pu, XING Hai-jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative [J]. Acta Physica Sinica, 2012, 61(15): 110503.
[24] Magin R L, Rawash Y Z, Berberan-Santos M N. Analyzing anomalous diffusion in NMR using a distribution of rate constants[C]//Baleanu D, Machado JAT, Luo ACJ. Fractional Dynamics and Control. New York:Springer, 2012. 263-274.
 [25] Shen Y J, Yang S P, Sui C Y. Analysis on limit cycle of fractional-order van der Pol oscillator [J]. Chaos, Solitons & Fractals, 2014, 67: 94–102.

PDF(1311 KB)

575

Accesses

0

Citation

Detail

段落导航
相关文章

/