流场中填充吸声材料夹层板结构的声振耦合特性

宁少武1,史治宇1,李晓松2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 107-113.

PDF(1789 KB)
PDF(1789 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 107-113.
论文

流场中填充吸声材料夹层板结构的声振耦合特性

  • 宁少武1,史治宇1,李晓松2
作者信息 +

The performance of vibro-acoustic coupling of the sandwich structure  with absorptive material in external convected fluids

  • NING Shaowu1, SHI Zhiyu1, LI Xiaosong2
Author information +
文章历史 +

摘要

采用等效流体模拟吸声材料,建立了外部流场作用下填充吸声材料夹层板结构的声振耦合模型,应用波动分析方法研究结构中声的透射特性,分析了入射声波入射角和方位角、流场流速和流向、夹层结构几何尺寸等参数对填充吸声材料夹层板结构声振耦合特性的影响。仿真计算表明吸声材料提高了双层板结构的隔声性能;隔声性能随着面板厚度和夹层厚度的增加而提高,随着入射角和方位角的增大而减小;在计算频段内(0~5000Hz),逆流入射时传声损失随着马赫数的增大而减小,顺流入射时却随着马赫数的增大而增大。

Abstract

 An equivalent fluid model is employed to characterize the absorption of sound in the sound absorptive material. A vibro-acoustic coupling model is developed for the sound insulation of an sandwich structure which filled with sound absorptive material in convected fluids. The performance of sound Transmission is obtained by employing the wave method. The effects factors of vibro-acoustic responses which were researched include incident angles and azimuch angles, the velocity and direction of convected flow and the geometrical dimensions of the double panels. Studies have shown that the insulation of an structure with absorption than air is improved; the larger the thickness of the up and low panel and the gap are, the larger the sound transmission loss is; the larger the the incident elevation angles and azimuch angles are, the smaller the sound transmission loss is; in calculating the frequency band(0~5000Hz), Sound transmission loss decreases with the increase of Mach number when the sound is incident in the upstream but increases with the increase of Mach number when the sound is incident in the downstream.
 

关键词

等效流体模型 / 夹层板结构 / 吸声材料 / 声振耦合模型 / 驻波共振频率

Key words

equivalent fluid model / sandwich structure / absorptive material / vibro-acoustic coupling model / standing-wave resonance frequency

引用本文

导出引用
宁少武1,史治宇1,李晓松2. 流场中填充吸声材料夹层板结构的声振耦合特性[J]. 振动与冲击, 2016, 35(3): 107-113
NING Shaowu1, SHI Zhiyu1, LI Xiaosong2. The performance of vibro-acoustic coupling of the sandwich structure  with absorptive material in external convected fluids[J]. Journal of Vibration and Shock, 2016, 35(3): 107-113

参考文献

[1]. Howe M S, Shah P L. Influence of mean flow on boundary layer generated interior noise [J]. Journal of the Acoustical society of America, 1996, 99(6): 3401-3411.
[2]. Graham W R. Boundary layer induced noise in aircraft, part I & II [J]. Journal of Sound and vibration, 1996, 192(1): 101-138.
[3]. Gardonio P, Elliott S J. Active control of structure-borne and airborne sound transmission through double panel [J]. Journal of Aircraft, 1999, 36(6): 1023-1032.
[4]. Maury C, Gardonio P, Elliott S J. Model for active control of flow-induced noise transmitted through double partitions [J]. AIAA Journal, 2002, 40(6): 1113-1121.
[5]. Pietrzko S J, Mao Q. New results in active and passive control of sound transmission through double wall structures [J]. Aerospace Science and Technology, 2008, 12(1): 42-53.
[6]. Carneal J P, Fuller C R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems [J]. Journal of Sound and vibration, 2004, 272: 749-771.
[7]. Antonio J M P, Tadeu A, Godinho L. Analytical evaluation of the acoustic insulation provided by double infinite walls [J]. Journal of Sound and vibration, 2003, 263(1): 113-129.
[8]. Brunskog J. The influence of finite cavities on the sound insulation of double-plate structures [J]. Acta Astronautica, 2005, 117(6): 3727-3739.
[9]. Villot M, Guigou C, Gagliardini L. Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures. Journal of Sound and vibration, 2001, 245(3): 433-455.
[10]. Xin F X, Lu T J. Analytical and experimental investigation on transmission loss of clamped double panels: Implication of boundary effects [J]. Journal of the Acoustical society of America, 2009, 125(3): 1506-1517.
[11]. Frampton K D. Radiation efficiency of convected fluid-loaded plates [J]. Journal of the Acoustical society of America, 2003, 113(5): 2663-2673.
[12]. Frampton K D. The effect of flow-induced coupling on sound radiation from convected fluid loaded plates [J]. Journal of the Acoustical society of America, 2005, 117(3): 1129-1137.
[13]. Schmidt P L, Frampton K D. Effect of In-Plane Forces on Sound Radiation From Convected, Fluid Loaded Plates. Journal of Vibration and Acoustics, 2009, 131(021001): 1-8.
[14]. Xin F X, Lu T J, Chen C Q. External Mean Flow Influence on Noise Transmission Through Double-Leaf Aeroelastic Plates [J]. AIAA Journal, 2009, 47(8): 1939-1951.
[15]. Panneton R, Atalla N. Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials [J]. Journal of the Acoustical society of America, 1996, 100(1): 346-354.
[16]. 卢天健,辛锋先. 轻质板壳结构设计的振动和声学基础[M]. 北京:科学出版社,2012: 21.
Lu T J, Xin F X. Vibroacoustics of Lightweight Sandwich Structures[M]. Beijing: Science Press, 2012.
[17]. Biot M A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid.I & II [J]. Journal of the Acoustical society of America, 1956, 28(2): 168-191.
[18]. Allard J F, Champoux Y. New empirical equations for sound propagation in rigid frame fibrous materials [J]. Journal of the Acoustical Society of America,1992, 91(6): 3346-3353.
[19]. Xin F X, Lu T J. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption [J]. Journal of the Acoustical Society of America, 2011, 12 (4): 1919-1934.
[20]. Koval L R. Effect of air flow, panel curvature, and internal pressurization on field‐incidence transmission loss [J]. Journal of the Acoustical Society of America, 1976, 59(6): 1379-1385.

PDF(1789 KB)

Accesses

Citation

Detail

段落导航
相关文章

/