快速自适应经验模态分解方法的基本原理及其性能评估

周义,李鸿光

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 14-19.

PDF(1584 KB)
PDF(1584 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 14-19.
论文

快速自适应经验模态分解方法的基本原理及其性能评估

  • 周义,李鸿光
作者信息 +

The basic principle and performance evaluation on fast and adaptive empirical mode decomposition

  • ZHOU Yi   LI Hong-guang
Author information +
文章历史 +

摘要

经验模态分解是一种有效的信号分解方法,尤其是针对非平稳非线性信号。然而,随着研究的深入,学者们发现该方法中存在着诸多弊端。本文根据Bhuiyan的研究,提出了一种针对一维信号的快速自适应经验模态分解方法。通过大量的数值仿真,证明这种方法不但能克服传统方法的弊端、得到高质量的分解结果,还能大幅度地提高计算效率。

Abstract

Empirical mode decomposition is an effective signal decomposition method, especially for non-stationary and non-linear signals. But it is found by researchers that there exist a lot of drawbacks with intensive studies. Therefore, a 1D signal processing method, called fast and adaptive empirical mode decomposition, is proposed according to the Bhuiyan’s study in this paper. It has been proved by numerous numerical simulations that this method can not only overcome drawbacks of traditional methods and then obtain decomposition results with high quality, but also enhance computing efficiency.
 

关键词

经验模态分解 / 快速自适应经验模态分解 / 数值仿真

引用本文

导出引用
周义,李鸿光. 快速自适应经验模态分解方法的基本原理及其性能评估[J]. 振动与冲击, 2016, 35(3): 14-19
ZHOU Yi LI Hong-guang. The basic principle and performance evaluation on fast and adaptive empirical mode decomposition[J]. Journal of Vibration and Shock, 2016, 35(3): 14-19

参考文献

[1] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998,454(1971): 903-995.
[2] 陈  林,宋海斌. 基于经验模态分解的地震瞬时属性提取 [J]. 地球物理学进展,2008,23(4): 1179-1185.
CHEN Lin, SONG Hai-bin. Seismic instantaneous attribute extraction based on empirical mode decomposition [J]. Progress in geophysics, 2008, 23(4): 1179-1185.
[3] 李永勤,王  清,邓亲恺. EMD及其在生物医学信号处理中的应用研究[J]. 生物医学工程学杂志, 2005, 22(5): 1058-1062.
LI Yong-qin, WANG Qing, DENG Qin-kai. Research on EMD and its Application in Biomedical Signal Processing [J]. Journal of biomedical engineering, 2005, 22(5): 1058-1062..
[4] 时培明, 丁雪娟, 李  庚, 韩东颖. 一种EMD改进方法及其在旋转机械故障诊断中的应用[J]. 振动与冲击, 2013, 32(4): 185-190.
SHI Pei-ming, DING Xue-jun, LI Geng, HAN Dong-ying. An improved method of EMD and its applications in rotating machinery fault diagnosis [J]. Journal of vibration and shock, 2013, 32(4): 185-190.
[5] 苏文胜, 王奉涛, 张志新, 郭正刚,李宏坤. EMD 降噪和谱峭度法在滚动轴承早期故障诊断中的应用 [J]. 振动与冲击, 2010, 29(3): 18-21.
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin, GUO Zheng-gang, LI Hong-kun. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings [J]. Journal of vibration and shock, 2010, 29(3): 18-21.
[6] Rilling, G. and P. Flandrin, One or Two Frequencies? The Empirical Mode Decomposition Answers[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 85-95.
[7] 郭明威, 倪世宏, 朱家海, 张志鹏. 振动信号中HHT/EMD端点延拓方法研究[J]. 振动与冲击, 2012, 31(8): 62-66.
GUO Ming-wei, NI Shi-hong, ZHU Jia-hai, ZHANG Zhi-peng. HHT/EMD end extension method in vibration signal analysis [J]. Journal of vibration and shock, 2012, 31(8): 62-66
[8] 蔡艳平, 李艾华, 石林锁,何艳萍,赵静茹. EMD端点效应的改进型混沌延拓方法及其在机械故障诊断中的应用[J]. 振动与冲击, 2011, 30(11): 46-52.
CAI Yan-ping, LI Ai-hua, SHI Lin-suo, HE Yan-ping, ZHAO Jing-ru. Processing method for end effects of EMD based on improved chaos forecasting model and its application in machinery fault diagnosis [J]. Journal of vibration and shock, 2011, 30(11): 46-52.
[9] Wu Z, Huang N E., Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1): 1-41.
[10] Rilling G, Flandrin P, Gonalves P, Lily J.M. Bivariate empirical mode decomposition[J]. Signal Processing Letters, IEEE, 2007, 14(12): 936-939.
[11] Damerval, C., S. Meignen, and V. Perrier, A fast algorithm for bidimensional EMD. Signal Processing Letters, IEEE, 2005. 12(10): 701-704.
[12] Bhuiyan, Sharif, Reza R. Adhami, Jesmin F. Khan. Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation[J]. EURASIP Journal on Advances in Signal Processing, 2008,(2008): 164.

PDF(1584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/