基于CSI 效应的高耸结构液压驱动ATMD风振控制研究

刘洁1,刘洪波1, 刘红军2

振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 152-157.

PDF(1499 KB)
PDF(1499 KB)
振动与冲击 ›› 2016, Vol. 35 ›› Issue (3) : 152-157.
论文

基于CSI 效应的高耸结构液压驱动ATMD风振控制研究

  • 刘洁1,刘洪波1, 刘红军2
作者信息 +

High-rise structure of hydraulic driven ATMD wind-induced vibration Control study based on CSI effect

Author information +
文章历史 +

摘要

在高耸结构风振控制中,由于忽略控制系统与结构振动的相互作用(CSI),造成实际模型与理论模型存在差异,往往造成实际控制效果与理论控制效果不一致,导致控制效果不佳。本文以某电视塔为对象,将CSI 效应考虑在高耸结构模型中,建立了考虑CSI效应的动力特性模型,并与不考虑CSI效应的理想模型进行了对比分析。基于结构动力特性模型,分析了在控制算法中,考虑与不考虑CSI效应对控制效果的影响。为高耸结构ATMD风振控制提供相关的工程建议。

Abstract

Due to neglecting control-structure interaction (CSI) which brings difference between theoretical model and real model, the wind-induced vibration control for the high-rise building often leads to the real control effect different from theoretical control effect and results in poor control effect. This paper takes a TV Tower for example. The CSI effect is considered in the high-rise structural model. Build the structural dynamic characteristic model considering CSI effect. And do the comparative analysis with the ideal model not considering the CSI effect. With structural dynamic characteristic model, do the analysis of control algorithm with and without considering the CSI effect on the control effect. It provides related engineering suggestion for the high-rise building wind-induced vibration control with the ATMD device.

关键词

高耸结构 / 风振控制 / 液压作动器 / 结构-控制系统相互作用

Key words

high-rise structure / wind-induced vibration control / hydraulic driver / control-structure interaction

引用本文

导出引用
刘洁1,刘洪波1, 刘红军2. 基于CSI 效应的高耸结构液压驱动ATMD风振控制研究[J]. 振动与冲击, 2016, 35(3): 152-157
High-rise structure of hydraulic driven ATMD wind-induced vibration Control study based on CSI effect[J]. Journal of Vibration and Shock, 2016, 35(3): 152-157

参考文献

[1]Yao J T P.Concept of Structure Control.Journal of the Structural Divislon [J].ASCE.1972,98 (ST7):1567—1574.
[2]Nishitani A,Inoue Y.Overview of the application of active/semiactive control to building structures in Japan[J] .Earthquake Engineering and Structural Dynamics,2001,30(11):1565-1574.
[3]欧进萍, 张春巍, 李惠, 彭君义. 大连市某高层建筑风振和地震反应的主动质量阻尼(AMD)控制分析与设计. 建筑结构学报. 2004,25(3):29-37.
Ou J P, Zhang C W, Li H, Peng J Y. Analysis and design of active mass damper (AMD) control against wind and earthquake for a high-rise building in Dalian. Journal of building structures.
 [4] 李春祥,许志民,张丽卿.主动调谐质量阻尼器对不规则建筑的减震行为研究[J]. 振动与冲击,2008,27(1):76-83.
Li C X,Xu Z M,Zhang L Q. Earthquake reduction behaviors of active tuned mass dampers for an asymmetric building[J]. Journal of vibration and shock. 2008, 27(1):76-83.
[5]李志军,邓子辰,顾致平.ATMD结构基于补偿器的准滑模控制[J]. 振动、测试与诊断,2012,32(6):909-914.
Li Z J,Deng Z C,Gu Z P.Quasi-sliding mode control ith compensator for ATMD-buildings[J]. Journal of  Vibration ,Measurement &Diagnosis. 2012, 32(6):909-914
[6] 文永奎,卢文良. ATMD对斜拉桥抖振减振的控制设计模型研究[J].振动工程学报,2014,27(2):255-262.
Wen Y K,Lu W L.Study of control design modelfor buffeting response control of cable-stayed bridge using ATMD[J]. Journal of vibration engineering. 2014,27(2),255-262.
[7] 文永奎,卢文良. 斜拉桥风振减振基于H_2范数的ATMD和传感器配置优化[J].土木工程学报,2014, 47(7):70-78.
Wen Y K,Lu W L.Optimal placement of ATMD and sensors based on H2-norm for wind response control of cable-stayed bridge[J].China civil ngineering journal.2014,47(7):70-78.
[8] 滕军,幸厚冰.京基100大厦AMD控制系统在线计算关键技术研究[J].振动与冲击.2011,30(11):230-237
Teng J, Xing H B. Study of key techniques of online algorithms for AMD control system used in KK100. Journal of vibration and shock. 2011, 30(11):230-237.
[9]陈鑫,李爱群,王泳,等.自立式高耸结构风振控制方法研究[J].振动与冲击,2015,34(7):149-155.
Chen Xin,Li Aiqun,Wang Yong,et al.Investigation on techniques for windinduced vibration control of of selfstanding highrise structures[J].Journal of Vibration and Shock,2015,34(7):149-155.
[10]张春巍, 欧进萍. 电磁式惯性型作动器与结构耦合系统建模与试验研究. 振动工程学报. 2006,19(3),289-295.
Zhang C W, Ou J P. Modeling and testing for electromagnetic mass damper and structure coupled system. Journal of vibration engineering. 2006,19(3),289-295.
[11] Dyke S J, Spencer B F, Quast P., et al. Role of control-structure interaction in protective system design. ASCE Journal of Engineering Mechanics. 1995, 121 (2) :322~338.
[12] Liu J, Liu H J, Dyke S J. Control–structure interaction for micro-vibration structural control[J]. Smart Materials and Structures. 2012, 21(10): 105021.

PDF(1499 KB)

Accesses

Citation

Detail

段落导航
相关文章

/